Orthogonal multiwavelets of multiplicity four

被引:4
|
作者
Hong, D [1 ]
Wu, AD
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Univ Petr, Dept Math, Shandong 257062, Peoples R China
关键词
wavelets; multiwavelets; approximation order; refinement equations; subdivision;
D O I
10.1016/S0898-1221(00)00229-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solutions of a system of refinement equations with a 4 x 1 function vector and three nonzero 4 x 4 coefficient matrices. We give explicit expressions of coefficient matrices such that the refinement function vector and the corresponding wavelet vector have properties of short support [0, 2], symmetry or antisymmetry, and orthogonality. The properties of convergence of the subdivision scheme, approximation order, and smoothness of the refinement functions are also discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1153 / 1169
页数:17
相关论文
共 50 条
  • [1] Data compression by orthogonal multiwavelets of multiplicity four
    Guan, LT
    Liu, XM
    Guan, L
    WAVELET ANALYSIS AND ITS APPLICATIONS (WAA), VOLS 1 AND 2, 2003, : 165 - 170
  • [2] Convergence and smoothness of orthogonal multiplicity four multiwavelets
    Guan, L.
    Hong, D.
    Wu, A.
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2001, 18 (02): : 1 - 11
  • [3] CONSTRUCTION OF SYMMETRIC ORTHOGONAL MULTIWAVELETS WITH MULTIPLICITY 2
    Liu, Chenglin
    Feng, Xiaoxia
    Yang, Zhongpeng
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 304 - 308
  • [4] BALANCED INTERPOLATORY MULTIWAVELETS WITH MULTIPLICITY r
    Li, Baobin
    Luo, Tiejian
    Peng, Lizhong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (04)
  • [5] ORTHOGONAL MULTIWAVELETS WITH VANISHING MOMENTS
    STRANG, G
    STRELA, V
    OPTICAL ENGINEERING, 1994, 33 (07) : 2104 - 2107
  • [6] Construction of orthogonal multiwavelets with short sequence
    Pan, J
    Jiao, LC
    Fang, YW
    SIGNAL PROCESSING, 2001, 81 (12) : 2609 - 2614
  • [7] Orthogonal multiwavelets transform for image denoising
    Ling, W
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 987 - 991
  • [8] An algorithm for the construction of symmetric orthogonal multiwavelets
    Turcajová, R
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 532 - 550
  • [9] A fast algorithm for constructing orthogonal multiwavelets
    Shouzhi, Y
    ANZIAM JOURNAL, 2004, 46 : 185 - 201
  • [10] MULTIWAVELETS OF ODD DEGREE, ORTHOGONAL TO POLYNOMIALS
    Shumilov, B. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2019, (47): : 84 - 92