Contraction of Lie algebra and separation of variables on three-dimensional sphere

被引:0
|
作者
Izmest'ev, AA [1 ]
Pogosyan, GS [1 ]
机构
[1] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Inonu-Wigner contraction from the O(4) group to the Euclidean E(3) group is used to relate the separation of variables in Laplace-Beltrami operators for two corresponding homogeneous spaces. We show that the six systems of coordinates on the three-dimensional sphere contracted to nine systems of coordinates in Euclidean space.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [1] Lie-algebra contractions and separation of variables. Three-dimensional sphere
    G. S. Pogosyan
    A. Yakhno
    Physics of Atomic Nuclei, 2009, 72 : 836 - 844
  • [2] Lie-algebra contractions and separation of variables. Three-dimensional sphere
    Pogosyan, G. S.
    Yakhno, A.
    PHYSICS OF ATOMIC NUCLEI, 2009, 72 (05) : 836 - 844
  • [3] Contraction algebra and singularity of three-dimensional flopping contraction
    Hua, Zheng
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 431 - 443
  • [4] Contraction algebra and singularity of three-dimensional flopping contraction
    Zheng Hua
    Mathematische Zeitschrift, 2018, 290 : 431 - 443
  • [5] Automorphisms of the enveloping algebra of the three-dimensional nilpotent Lie algebra
    Drensky, V
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1639 - 1647
  • [6] Lie algebra contractions and separation of variables
    Izmest'ev, AA
    Winternitz, P
    Pogosyan, GS
    Sissakian, AN
    PHYSICS OF PARTICLES AND NUCLEI, 2001, 32 : S41 - S42
  • [7] Deformations of the three-dimensional Lie algebra sl(2)
    Ibrayeva, A. A.
    Ibraev, Sh Sh
    Turbayev, B. E.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01): : 44 - 51
  • [8] Strong contraction of the representations of the three-dimensional Lie algebras
    Subag, E. M.
    Baruch, E. M.
    Birman, J. L.
    Mann, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (26)
  • [9] Colength of the variety generated by a three-dimensional simple Lie algebra
    Pestova, Yu. R.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2015, 70 (03) : 144 - 147
  • [10] Contractions of Lie algebras and separation of variables.: The n-dimensional sphere
    Izmest'ev, AA
    Pogosyan, GS
    Sissakian, AN
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1549 - 1573