Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers

被引:50
|
作者
Liu, Jing [1 ]
Qu, Wangda [1 ]
Xie, Yangsu [1 ]
Zhu, Bowen [1 ]
Wang, Tianyu [1 ]
Bai, Xianglan [1 ]
Wang, Xinwei [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, 2010 Black Engn Bldg, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
GRAPHITE; GRAPHENE; POLYACRYLONITRILE; PRECURSORS; MODULUS; PAPER; OXIDE; SIZE;
D O I
10.1016/j.carbon.2017.05.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on systematic investigation of the structure and thermal conductivity of lignin-based carbon fibers (CF) at the microscale. The lignin-based CF is produced by melt-spinning pyrolytic lignin derived from red oak. The 0 K-limit phonon scattering mean free path uncovers a characteristic structure size of similar to 1.2 nm, which agrees well with the crystallite size by X-ray scattering (0.9 and 1.3 nm) and the cluster size by Raman spectroscopy (2.31 nm). The thermal conductivity of as-prepared CFs is determined at similar to 1.83 W/m center dot K at room temperature. The thermal reffusivity of CFs shows little change from room temperature down to 10 K, uncovering the existence of extensive defects and grain boundaries which dominate phonon scattering. The localized thermal conductivity of CFs is increased by more than ten-fold after being annealed at similar to 2800 K, to a level of 24 W/m center dot K. Our microscale Raman scanning from less annealed to highly annealed regions shows one-fold increase of the cluster size: from 1.83 nm to 4 nm. This directly confirms structure improvement by annealing. The inverse of the thermal conductivity is found linearly proportional to the annealing temperature in the range of 1000-2800 K. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 50 条
  • [1] Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers
    Wang, Ridong
    Zobeiri, Hamidreza
    Lin, Huan
    Qu, Wangda
    Bai, Xianglan
    Deng, Cheng
    Wang, Xinwei
    [J]. CARBON, 2019, 147 : 58 - 69
  • [2] Effect of Organoclay Reinforcement on Lignin-Based Carbon Fibers
    Qin, W.
    Kadla, J. F.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (22) : 12548 - 12555
  • [3] FINE-STRUCTURE OF LIGNIN-BASED CARBON-FIBERS
    JOHNSON, DJ
    TOMIZUKA, I
    WATANABE, O
    [J]. CARBON, 1975, 13 (04) : 321 - 325
  • [4] Effect of Current Thermal Annealing on Thermal Conductivity of Carbon Fibers
    Lin H.
    Kou A.
    Zhang J.
    Dong H.
    [J]. Cailiao Daobao/Materials Reports, 2020, 34 (14): : 14198 - 14203and14208
  • [5] Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability
    Xu, Xuezhu
    Zhou, Jian
    Jiang, Long
    Lubineau, Gilles
    Payne, Scott A.
    Gutschmidt, David
    [J]. CARBON, 2014, 80 : 91 - 102
  • [6] Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers
    Bai, Jixing
    Wang, Shichao
    Li, Yajun
    Wang, Zhe
    Tang, Jianguo
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 187 : 594 - 602
  • [7] Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)
    Fang, Wei
    Yang, Sheng
    Wang, Xi-Luan
    Yuan, Tong-Qi
    Sun, Run-Cang
    [J]. GREEN CHEMISTRY, 2017, 19 (08) : 1794 - 1827
  • [8] Biocomposites from lignin-based carbon fibers
    Harper, David P.
    Baker, Darren
    Penumadu, Dayakar
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [9] Preparation and Application of Lignin-Based Carbon Fibers
    Wu H.
    Liu C.
    Yang Z.
    Mao X.
    [J]. Liu, Chengkun (liuchengkun@xpu.edu.cn), 1600, Sichuan University (36): : 176 - 183
  • [10] Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin
    Braun, JL
    Holtman, KM
    Kadla, JF
    [J]. CARBON, 2005, 43 (02) : 385 - 394