Maintaining all-pairs approximate shortest paths under deletion of edges

被引:0
|
作者
Baswana, S [1 ]
Hariharan, R [1 ]
Sen, S [1 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, New Delhi, India
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a hierarchical scheme for efficiently maintaining all-pairs approximate shortest-paths in undirected unweighted graphs under deletions of edges. An alpha-approximate shortest-path between two vertices is a path of length at-most alpha times the length of the shortest path. For maintaining alpha-approximate shortest paths for all pairs of vertices separated by distance less than or equal to d in a graph of n vertices, we present the first o(nd) update time algorithm based on our hierarchical scheme. In particular, the update time per edge deletion achieved by our algorithm is (O) over tilde (min{rootnd, (nd)(2/3)}) for 3-approximate shortest-paths, and (O) over tilde (min{(3)rootnd, (nd)(4/7)}) for 7-approximate shortest-paths. For graphs with theta(n(2)) edges, we achieve even further improvement in update time : (O) over tilde(rootnd) for 3-approximate shortest-paths, and (O) over tilde((3)rootnd(2)) for 5-approximate shortest-paths. For maintaining all-pairs approximate shortest-paths, we improve the previous (O) over tilde (n(3/2)) bound on the update time per edge deletion for approximation factor greater than or equal to 3. In particular, update time achieved by our algorithm is (O) over tilde (n(10/9)) for 3-approximate shortest-paths, (O) over tilde (n(14/13)) for 5-approximate shortest-paths, and (O) over tilde (n(28/27)) for 7-approximate shortest-paths. All our algorithms achieve optimal query time and are simple to implement.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [1] Algorithms for maintaining all-pairs shortest paths
    Misra, S
    Oommen, BJ
    10TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2005, : 116 - 121
  • [2] Fast 2-Approximate All-Pairs Shortest Paths
    Dory, Michal
    Forster, Sebastian
    Kirkpatrick, Yael
    Nazari, Yasamin
    Williams, Virginia Vassilevska
    de Vos, Tijn
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4728 - 4757
  • [3] Dynamic approximate all-pairs shortest paths in undirected graphs
    Roditty, L
    Zwick, U
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 499 - 508
  • [4] DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS IN UNDIRECTED GRAPHS
    Roditty, Liam
    Zwick, Uri
    SIAM JOURNAL ON COMPUTING, 2012, 41 (03) : 670 - 683
  • [5] All-pairs almost shortest paths
    Dor, D
    Halperin, S
    Zwick, U
    SIAM JOURNAL ON COMPUTING, 2000, 29 (05) : 1740 - 1759
  • [6] FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHS
    Baswana, Surender
    Kavitha, Telikepalli
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2865 - 2896
  • [7] Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths
    Baswana, Surender
    Hariharan, Ramesh
    Sen, Sandeep
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2007, 62 (02): : 74 - 92
  • [8] An efficient dynamic algorithm for maintaining all-pairs shortest paths in stochastic networks
    Misra, S
    Oommen, BJ
    IEEE TRANSACTIONS ON COMPUTERS, 2006, 55 (06) : 686 - 702
  • [9] ALL-PAIRS SHORTEST PATHS AND THE ESSENTIAL SUBGRAPH
    MCGEOCH, CC
    ALGORITHMICA, 1995, 13 (05) : 426 - 441
  • [10] Fuzzy all-pairs shortest paths problem
    Seda, Milos
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 395 - 404