A high-throughput cell-based toxicity analysis of drug metabolites using flow cytometry.

被引:8
|
作者
Buenz, E. J. [1 ]
机构
[1] BioSci LLC, Rochester, MN USA
关键词
metabolite; HepG2; Jurkat; toxicity; high-throughput; cytometry; liver;
D O I
10.1007/s10565-007-0226-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The effects of liver enzymes on drug activities are important considerations in the drug discovery process. Frequently, liver microsomes are used to simulate first-pass metabolism in the liver; however, there are significant disadvantages to the microsome system. As an alternative, a simple cell-based, high-throughput system that allows for examination of metabolite activity is described. Using multiparameter flow cytometry and the low-volume, high-sample format of 96-well plates, it is possible to rapidly evaluate a dose-response curve for metabolites based on variables including initial compound concentrations, hepatocyte cell line metabolic activities, and time. Using HepG2 cells as a surrogate for hepatic metabolism of a potential therapeutic, the impact of metabolites on Jurkat cell death was measured by both propidium iodide dye exclusion and cell cycle analysis. While this system is not proposed to supplant liver microsome studies, this alternative assay provides a highly adaptable, low-cost, and high-throughput measure of drug metabolism.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [1] A high-throughput cell-based toxicity analysis of drug metabolites using flow cytometry
    E. J. Buenz
    Cell Biology and Toxicology, 2007, 23 : 361 - 365
  • [2] Cell-Based Screening Using High-Throughput Flow Cytometry
    Black, Christopher B.
    Duensing, Thomas D.
    Trinkle, Linda S.
    Dunlay, R. Terry
    ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, 2011, 9 (01) : 13 - 20
  • [3] High-Throughput Flow Cytometry in Drug Discovery
    Ding, Mei
    Edwards, Bruce S.
    SLAS DISCOVERY, 2018, 23 (07) : 599 - 602
  • [4] High-throughput flow cytometry for drug discovery
    Edwards, Bruce S.
    Young, Susan M.
    Saunders, Matthew J.
    Bologa, Cristian
    Oprea, Tudor I.
    Ye, Richard D.
    Prossnitz, Eric R.
    Graves, Steven W.
    Sklar, Larry A.
    EXPERT OPINION ON DRUG DISCOVERY, 2007, 2 (05) : 685 - 696
  • [5] Quality control of cell-based high-throughput drug screening
    Zhang, Zhiyun
    Guan, Ni
    Li, Ting
    Mais, Dale E.
    Wang, Mingwei
    ACTA PHARMACEUTICA SINICA B, 2012, 2 (05) : 429 - 438
  • [6] A multilayer microdevice for cell-based high-throughput drug screening
    Liu, Chong
    Wang, Lei
    Xu, Zheng
    Li, Jingmin
    Ding, Xiping
    Wang, Qi
    Li Chunyu
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (06)
  • [7] High-Throughput Flow Cytometry
    Robinson, J. Paul
    Patsekin, Valery
    Rajwa, Bartek
    Davisson, V. Jo
    Li, Nianyu
    Narayanan, Padmakumar
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2011, 31 (08): : 20 - +
  • [8] High throughput screening of molecular targets by flow cytometry.
    Sklar, LA
    Edwards, BS
    Larson, RS
    Prossnitz, E
    Andrejewski, B
    Bennett, T
    Buranda, T
    Chigaev, A
    Foutz, T
    Jackson, C
    Key, A
    Kuckuck, F
    Potter, R
    Ramirez, S
    Simons, P
    Young, S
    Lopez, G
    CLINICAL CANCER RESEARCH, 2001, 7 (11) : 3701S - 3701S
  • [9] A robust high-throughput sandwich cell-based drug screening platform
    Zhang, Shufang
    Tong, Wenhao
    Zheng, Baixue
    Susanto, Thomas A. K.
    Xia, Lei
    Zhang, Chi
    Ananthanarayanan, Abhishek
    Tuo, Xiaoye
    Sakban, Rashidah B.
    Jia, Ruirui
    Iliescu, Ciprian
    Chai, Kah-Hin
    McMillian, Michael
    Shen, Shali
    Leo, Hwaliang
    Yu, Hanry
    BIOMATERIALS, 2011, 32 (04) : 1229 - 1241
  • [10] Recent advances in high-throughput flow cytometry for drug discovery
    Ding, Mei
    Baker, David
    EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (03) : 303 - 317