Thermodiffusion of repulsive charged nanoparticles - the interplay between single-particle and thermoelectric contributions

被引:23
|
作者
Cabreira Gomes, R. [1 ,2 ]
Ferreira da Silva, A. [1 ,2 ,3 ]
Kouyate, M. [1 ]
Demouchy, G. [1 ,6 ]
Meriguet, G. [1 ]
Aquino, R. [4 ]
Dubois, E. [1 ]
Nakamae, S. [5 ]
Roger, M. [5 ]
Depeyrot, J. [2 ]
Perzynski, R. [1 ]
机构
[1] Sorbonne Univ prime, CNRS, Lab PHENIX, F-75005 Paris, France
[2] Univ Brasilia, Inst Fis, Complex Fluid Grp, Brasilia, DF, Brazil
[3] Univ Rondonia, Dept Fis, UNIR, Rondonia, Brazil
[4] Univ Brasilia, FUP, LNAA, Brasilia, DF, Brazil
[5] CEA Saclay, CNRS UMR 3680, CEA IRAMIS SPEC, SPHINX, Gif Sur Yvette, France
[6] Univ Cergy Pontoise, Dept Phys, 33 Bd port, F-95011 Cergy Pontoise, France
关键词
FORCED RAYLEIGH-SCATTERING; THERMAL-DIFFUSION; SORET COEFFICIENT; INTERACTING COLLOIDS; AQUEOUS FERROFLUIDS; MAGNETIC FLUIDS; TRANSPORT; LIQUIDS; HEAT; THERMOPHORESIS;
D O I
10.1039/c8cp02558d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermodiffusion of different ferrite nanoparticles (NPs), similar to 10 nm in diameter, is explored in tailor-made aqueous dispersions stabilized by electrostatic interparticle interactions. In the dispersions, electrosteric repulsion is the dominant force, which is tuned by an osmotic-stress technique, i. e. controlling of osmotic pressure Pi, pH and ionic strength. It is then possible to map Pi and the NPs' osmotic compressibility chi in the dispersion with a Carnahan-Starling formalism of effective hard spheres (larger than the NPs' core). The NPs are here dispersed with two different surface ionic species, either at pH similar to 2 or 7, leading to a surface charge, either positive or negative. Their Ludwig-Soret S-T coefficient together with their mass diffusion D-m coefficient are determined experimentally by forced Rayleigh scattering. All probed NPs display a thermophilic behavior (S-T < 0) regardless of the ionic species used to cover the surface. We determine the NPs' Eastman entropy of transfer and the Seebeck (thermoelectric) contribution to the measured Ludwig-Soret coefficient in these ionic dispersions. The NPs' Eastman entropy of transfer <(S)over cap>(NP) is interpreted through the electrostatic and hydration contributions of the ionic shell surrounding the NPs.
引用
收藏
页码:16402 / 16413
页数:12
相关论文
共 50 条
  • [1] Thermodiffusion of charged colloids: Single-particle diffusion
    Dhont, Jan K. G.
    Wiegand, S.
    Duhr, S.
    Braun, D.
    [J]. LANGMUIR, 2007, 23 (04) : 1674 - 1683
  • [2] Interplay between plasmon and single-particle excitations in a metal nanocluster
    Jie Ma
    Zhi Wang
    Lin-Wang Wang
    [J]. Nature Communications, 6
  • [3] Interplay between plasmon and single-particle excitations in a metal nanocluster
    Ma, Jie
    Wang, Zhi
    Wang, Lin-Wang
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Interplay between single-particle and collective features in the boson fermion model
    Domanski, T
    Ranninger, J
    [J]. PHYSICAL REVIEW B, 2004, 70 (18) : 1 - 13
  • [5] Magnetic moments: Study of the interplay between single-particle and collective excitations
    Benczer-Koller, N.
    Kumbartzki, G. J.
    Boutachkov, P.
    Escuderos, A.
    Sharon, Y. Y.
    Zamick, L.
    Stefanova, E. A.
    Robinson, S. J. Q.
    Werner, V.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2007, 70 (08) : 1330 - 1335
  • [6] Magnetic moments: Study of the interplay between single-particle and collective excitations
    N. Benczer-Koller
    G. J. Kumbartzki
    P. Boutachkov
    A. Escuderos
    Y. Y. Sharon
    L. Zamick
    E. A. Stefanova
    S. J. Q. Robinson
    V. Werner
    [J]. Physics of Atomic Nuclei, 2007, 70 : 1330 - 1335
  • [7] Rectangular lattices of permalloy nanoparticles: Interplay of single-particle magnetization distribution and interparticle interaction
    Fraerman, AA
    Gusev, SA
    Mazo, LA
    Nefedov, IM
    Nozdrin, YN
    Karetnikova, IR
    Sapozhnikov, MV
    Shereshevskii, IA
    Sukhodoev, LV
    [J]. PHYSICAL REVIEW B, 2002, 65 (06) : 1 - 5
  • [8] INTERPLAY BETWEEN SINGLE-PARTICLE AND COLLECTIVE DEGREES OF FREEDOM IN RAPIDLY ROTATING NUCLEI
    FRAUENDORF, S
    [J]. NUCLEAR PHYSICS A, 1983, 409 (NOV) : C243 - C258
  • [9] Tensor interaction contributions to single-particle energies
    Brown, B. A.
    Duguet, T.
    Otsuka, T.
    Abe, D.
    Suzuki, T.
    [J]. PHYSICAL REVIEW C, 2006, 74 (06):
  • [10] Single-particle detection for the MIT charged-particle microbeam
    O'Meara, JM
    Boisseau, RP
    Dart, A
    Ledoux, RJ
    Nett, WP
    Yanch, JC
    [J]. RADIATION RESEARCH, 2002, 158 (03) : 372 - 373