Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

被引:1
|
作者
Long-Nhat Ho [1 ]
Anh Tuan Tran [1 ,2 ]
Quynh Phung [1 ]
Minh Hoai [1 ,3 ]
机构
[1] VinAI Res, Hanoi, Vietnam
[2] Vin Univ, Hanoi, Vietnam
[3] SUNY Stony Brook, Stony Brook, NY 11790 USA
关键词
SHAPE;
D O I
10.1109/ICCV48922.2021.01237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multiview, image-collection, and video sets. Code is available at: https://github.com/VinAIResearch/LeMul.
引用
收藏
页码:12580 / 12590
页数:11
相关论文
共 50 条
  • [1] Learning pose-invariant 3D object reconstruction from single-view images
    Peng, Bo
    Wang, Wei
    Dong, Jing
    Tan, Tieniu
    [J]. NEUROCOMPUTING, 2021, 423 : 407 - 418
  • [2] 3D-Mask-GAN:Unsupervised Single-View 3D Object Reconstruction
    Wan, Qun
    Li, Yidong
    Cui, Haidong
    Feng, Zheng
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC AND SOCIO-CULTURAL COMPUTING (BESC 2019), 2019,
  • [3] Learning View Priors for Single-view 3D Reconstruction
    Kato, Hiroharu
    Harada, Tatsuya
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9770 - 9779
  • [4] Single-View 3D Object Reconstruction from Shape Priors in Memory
    Yang, Shuo
    Xu, Min
    Xie, Haozhe
    Perry, Stuart
    Xia, Jiahao
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3151 - 3160
  • [5] Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision
    Yan, Xinchen
    Yang, Jimei
    Yumer, Ersin
    Guo, Yijie
    Lee, Honglak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [6] 2D GANs Meet Unsupervised Single-View 3D Reconstruction
    Liu, Feng
    Liu, Xiaoming
    [J]. COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 497 - 514
  • [7] Viewpoint-independent Single-view 3D Object Reconstruction using Reinforcement Learning
    Ito, Seiya
    Ju, Byeongjun
    Kaneko, Naoshi
    Sumi, Kazuhiko
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, : 811 - 819
  • [8] Single-View 3D Reconstruction of Curves
    Fakih, Ali
    Wilser, Nicola
    Maillot, Yvan
    Cordier, Frederic
    [J]. ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 3 - 14
  • [9] Single-View 3D reconstruction: A Survey of deep learning methods
    Fahim, George
    Amin, Khalid
    Zarif, Sameh
    [J]. COMPUTERS & GRAPHICS-UK, 2021, 94 : 164 - 190
  • [10] Learning Single-View 3D Reconstruction with Limited Pose Supervision
    Yang, Guandao
    Cui, Yin
    Belongie, Serge
    Hariharan, Bharath
    [J]. COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 90 - 105