Universal spaces for finite-dimensional closed images of locally compact metric spaces

被引:0
|
作者
Kawamura, K
Tsuda, K
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 305, Japan
[2] Ehime Univ, Fac Engn, Dept Elect & Elect Engn, Lab Appl Math, Matsuyama, Ehime 790, Japan
关键词
Lasnev space; universal space; locally compact space; closed map; approaching anti-cover; UVn-property;
D O I
10.1016/S0166-8641(97)00149-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each nonnegative integer n, we show the existence of a universal space for the class of all at most n-dimensional closed images of locally compact separable metric spaces. For the construction, we use some properties of universal Menger compacta and a construction of UVn-maps due to Ferry. We also discuss the nonseparable cases under a certain condition on the weight of metric spaces. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 50 条