Eigenvalue estimates for a class of elliptic differential operators in divergence form

被引:10
|
作者
Gomes, Jose N., V [1 ,2 ]
Miranda, Juliana F. R. [1 ]
机构
[1] Univ Fed Amazonas, Dept Matemat, Av Gen Rodrigo Octavio 6200, BR-69080900 Manaus, Amazonas, Brazil
[2] Lehigh Univ, Dept Math, Christmas Saucon Hall,14 East Packer Ave, Bethlehem, PA 18015 USA
关键词
Drifting Laplacian; Eigenvalues; Elliptic operator; Immersions; DIRICHLET LAPLACIAN; HYPERSURFACES; MANIFOLDS;
D O I
10.1016/j.na.2018.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute estimates for eigenvalues of a class of linear second-order elliptic differential operators in divergence form (with Dirichlet boundary condition) on a bounded domain in a complete Riemannian manifold. Our estimates are based upon the Weyl's asymptotic formula. As an application, we find a lower bound for the mean of the first k eigenvalues of the drifting Laplacian. In particular, we have extended for this operator a partial solution given by Cheng and Yang for the generalized conjecture of Polya. We also derive a second-Yang type inequality due to Chen and Cheng, and other two inequalities which generalize results by Cheng and Yang obtained for a domain in the unit sphere and for a domain in the projective space. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
    Araujo Filho, Marcio C.
    Gomes, Jose N. V.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [2] Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
    Marcio C. Araújo Filho
    José N. V. Gomes
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [3] Eigenvalue estimates for a class of elliptic differential operators on compact manifolds
    Alencar, Hilario
    Neto, Gregorio Silva
    Zhou, Detang
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (03): : 491 - 514
  • [4] Eigenvalue estimates for a class of elliptic differential operators on compact manifolds
    Alencar H.
    Neto G.S.
    Zhou D.
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 (3) : 491 - 514
  • [5] A probabilistic proof of a priori Lp estimates for a class of divergence form elliptic operators
    Chojecki, Tymoteusz
    Komorowski, Tomasz
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 160
  • [6] Estimates of eigenvalues of an elliptic differential system in divergence form
    Araujo Filho, Marcio C.
    Gomes, Jose N., V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [7] Estimates of eigenvalues of an elliptic differential system in divergence form
    Marcio C. Araújo Filho
    José N. V. Gomes
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [8] SPECTRAL STABILITY ESTIMATES OF NEUMANN DIVERGENCE FORM ELLIPTIC OPERATORS
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 131 - 147
  • [9] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Vladimir Gol’dshtein
    Valerii Pchelintsev
    Alexander Ukhlov
    Analysis and Mathematical Physics, 2020, 10
  • [10] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)