Loose Hamilton Cycles in Random 3-Uniform Hypergraphs

被引:0
|
作者
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
基金
美国国家科学基金会;
关键词
RANDOM REGULAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the random hypergraph H = H(n,p;3) each possible triple appears independently with probability p. A loose Hamilton cycle can be described as a sequence of edges {x(i),y(i),(xi+1)} for i = 1,2,...,n/2 where x(1),x(2),...,x(n/2),y(1),y(2),...,y(n/2) are all distinct. We prove that there exists an absolute constant K > 0 such that if p >= Klogn/n(2) then lim(n ->infinity 4/n) Pr(H(n,p;3) contains a loose Hamilton cycle) = 1.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Transference for loose Hamilton cycles in random 3-uniform hypergraphs
    Petrova, Kalina
    Trujic, Milos
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (02) : 313 - 341
  • [2] Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree
    Kuhn, Daniela
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) : 767 - 821
  • [3] Loose Hamilton Cycles in Random Uniform Hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [4] Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs
    Han, Jie
    Zhao, Yi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 114 : 70 - 96
  • [5] Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs
    Buss, Enno
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (06) : 658 - 678
  • [6] Packing tight Hamilton cycles in 3-uniform hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    Loh, Po-Shen
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (03) : 269 - 300
  • [7] Packing tight Hamilton cycles in 3-uniform hypergraphs
    Frieze, Alan
    Krivelevich, Michael
    Loh, Po-Shen
    [J]. PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 913 - 932
  • [8] Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs
    Aigner-Horev, Elad
    Levy, Gil
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 412 - 443
  • [9] LOCALIZED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS
    Araujo, Pedro
    Piga, Simon
    Schacht, Mathias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 147 - 169
  • [10] 3-UNIFORM HYPERGRAPHS AND LINEAR CYCLES
    Ergemlidze, Beka
    Gyori, Ervin
    Methuku, Abhishek
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 933 - 950