Quantum and classical dynamics in adiabatic computation

被引:18
|
作者
Crowley, P. J. D. [1 ]
Duric, T. [1 ]
Vinci, W. [1 ]
Warburton, P. A. [1 ]
Green, A. G. [1 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevA.90.042317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing-though inconclusive-results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dynamics of quantum adiabatic computation
    Smelyanskiy, VN
    Timuçin, DA
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 453 - 456
  • [2] Computation and Dynamics: Classical and Quantum
    Kisil, Vladimir V.
    [J]. QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 5, 2010, 1232 : 306 - 312
  • [3] Realization of a classical counterpart of a scalable design for adiabatic quantum computation
    Zakosarenko, V.
    Bondarenko, N.
    van der Ploeg, S. H. W.
    Izmalkov, A.
    Linzen, S.
    Kunert, J.
    Grajcar, M.
    Il'ichev, E.
    Meyer, H. -G.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (02)
  • [4] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [5] Quantum adiabatic computation and adiabatic conditions
    Wei, Zhaohui
    Ying, Mingsheng
    [J]. PHYSICAL REVIEW A, 2007, 76 (02)
  • [6] Adiabatic quantum computation is equivalent to standard quantum computation
    Aharonov, D
    van Dam, W
    Kempe, J
    Landau, Z
    Lloyd, S
    Regev, O
    [J]. 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 42 - 51
  • [7] Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation
    Aharonov, Dorit
    van Dam, Wim
    Kempe, Julia
    Landau, Zeph
    Lloyd, Seth
    Regev, Oded
    [J]. SIAM REVIEW, 2008, 50 (04) : 755 - 787
  • [8] Adiabatic quantum computation is equivalent to standard quantum computation
    Aharonov, Dorit
    Van Dam, Wim
    Kempe, Julia
    Landau, Zeph
    Lloyd, Seth
    Regev, Oded
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 166 - 194
  • [9] Shortcuts to adiabatic classical spin dynamics mimicking quantum annealing
    Hatomura, Takuya
    Mori, Takashi
    [J]. PHYSICAL REVIEW E, 2018, 98 (03)
  • [10] Decoherence in adiabatic quantum computation
    Amin, M. H. S.
    Averin, Dmitri V.
    Nesteroff, James A.
    [J]. PHYSICAL REVIEW A, 2009, 79 (02):