Proton transport through one-atom-thick crystals

被引:640
|
作者
Hu, S. [1 ,2 ]
Lozada-Hidalgo, M. [1 ]
Wang, F. C. [3 ]
Mishchenko, A. [1 ]
Schedin, F. [2 ]
Nair, R. R. [1 ]
Hill, E. W. [2 ]
Boukhvalov, D. W. [4 ]
Katsnelson, M. I. [4 ]
Dryfe, R. A. W. [5 ]
Grigorieva, I. V. [1 ]
Wu, H. A. [3 ]
Geim, A. K. [1 ,2 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Sci & Technol China, Dept Modern Mech, Key Lab Mech Behav & Design Mat, Chinese Acad Sci, Hefei 230027, Anhui, Peoples R China
[4] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[5] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
GRAPHENE OXIDE MEMBRANES; NANOPOROUS GRAPHENE; POROUS GRAPHENE; SINGLE-LAYER; WATER DESALINATION; NAFION; CONDUCTIVITY; TEMPERATURE; PERMEATION; MECHANISMS;
D O I
10.1038/nature14015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene is increasingly explored as a possible platform for developing novel separation technologies(1-19). This interest has arisen because it is a maximally thin membrane that, once perforated with atomic accuracy, may allow ultrafast and highly selective sieving of gases, liquids, dissolved ions and other species of interest(2,9-19). However, a perfect graphene monolayer is impermeable to all atoms and molecules under ambient conditions(1-7): even hydrogen, the smallest of atoms, is expected to take billions of years to penetrate graphene's dense electronic cloud(3-6). Only accelerated atoms possess the kinetic energy required to do this(20,21). The same behaviour might reasonably be expected in the case of other atomically thin crystals(22,23). Here we report transport and mass spectroscopy measurements which establish that monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons under ambient conditions, whereas no proton transport is detected for thicker crystals such as monolayer molybdenum disulphide, bilayer graphene or multilayer hBN. Protons present an intermediate case between electrons (which can tunnel easily through atomically thin barriers(24)) and atoms, yet our measured transport rates are unexpectedly high(4,5) and raise fundamental questions about the details of the transport process. We see the highest room-temperature proton conductivity with monolayer hBN, for which we measure a resistivity to proton flow of about 10 Omega cm(2) and a low activation energy of about 0.3 electronvolts. At higher temperatures, hBN is outperformed by graphene, the resistivity of which is estimated to fall below 10(-3) Omega cm(2) above 250 degrees Celsius. Proton transport can be further enhanced by decorating the graphene and hBN membranes with catalytic metal nanoparticles. The high, selective proton conductivity and stability make one-atom-thick crystals promising candidates for use in many hydrogen-based technologies.
引用
收藏
页码:227 / +
页数:17
相关论文
共 50 条
  • [1] Proton transport through one-atom-thick crystals
    S. Hu
    M. Lozada-Hidalgo
    F. C. Wang
    A. Mishchenko
    F. Schedin
    R. R. Nair
    E. W. Hill
    D. W. Boukhvalov
    M. I. Katsnelson
    R. A. W. Dryfe
    I. V. Grigorieva
    H. A. Wu
    A. K. Geim
    Nature, 2014, 516 : 227 - 230
  • [2] One-Atom-Thick Crystals as Emerging Proton Sieves
    Jiang, Yu
    Ma, Jiaojiao
    Yang, Chongyang
    Hu, Sheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (51): : 12376 - 12383
  • [3] One-atom-thick materials
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2005, 84 (10): : 4 - 4
  • [4] Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals
    Yang, Seong-Jun
    Jung, Ju-Hyun
    Lee, Eunsook
    Han, Edmund
    Choi, Min-Yeong
    Jung, Daesung
    Choi, Shinyoung
    Park, Jun-Ho
    Oh, Dongseok
    Noh, Siwoo
    Kim, Ki-Jeong
    Huang, Pinshane Y.
    Hwang, Chan-Cuk
    Kim, Cheol-Joo
    NANO LETTERS, 2022, 22 (04) : 1518 - 1524
  • [5] One-atom-thick optical devices proposed
    不详
    PHOTONICS SPECTRA, 2011, 45 (09) : 24 - 25
  • [6] Graphene - A One-Atom-Thick Material for Microwave Devices
    Dragoman, D.
    Dragoman, M.
    Mueller, A. A.
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2008, 11 (01): : 29 - 35
  • [7] Perfect electromagnetic absorption at one-atom-thick scale
    Li, Sucheng
    Duan, Qian
    Li, Shuo
    Yin, Qiang
    Lu, Weixin
    Li, Liang
    Gu, Bangming
    Hou, Bo
    Wen, Weijia
    APPLIED PHYSICS LETTERS, 2015, 107 (18)
  • [8] DC AND MICROWAVE RESPONSE OF A ONE-ATOM-THICK GRAPHENE FLAKE
    Dragoman, M.
    Dragoman, D.
    Deligiorgis, G.
    Konstantinidis, G.
    Neculoiu, D.
    Cismaru, A.
    Plana, R.
    CAS: 2009 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2009, : 333 - +
  • [9] Photoaccelerated Water Dissociation Across One-Atom-Thick Electrodes
    Cai, Junhao
    Griffin, Eoin
    Guarochico-Moreira, Victor
    Barry, Donnchadh
    Xin, Benhao
    Huang, Shiqi
    Geim, Andre K.
    Peeters, Francois. M.
    Lozada-Hidalgo, Marcelo
    NANO LETTERS, 2022, 22 (23) : 9566 - 9570
  • [10] Generation of out-of-plane ferroelectric behavior in a one-atom-thick monolayer
    Richardson, Nicholas G.
    O'Hara, Andrew
    Pantelides, Sokrates T.
    2D MATERIALS, 2024, 11 (03)