On solenoidal high-degree polynomial approximations to solutions of the stationary Stokes equations

被引:0
|
作者
Swann, H [1 ]
机构
[1] San Jose State Univ, San Jose, CA 95192 USA
关键词
stationary Stokes equations; mixed methods; finite element methods; nonconforming methods; cell discretization;
D O I
10.1002/1098-2426(200009)16:5<480::AID-NUM5>3.0.CO;2-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The cell discretization algorithm, a nonconforming extension of the finite element method, is used to obtain approximations to the velocity and pressure functions satisfying the Stokes equations. Error estimates show convergence of the method. An implementation using polynomial bases is described that permits the use of the continuous approximations of the h-p finite element method and exactly satisfies the solenoidal requirement. We express the error estimates in terms of the diameter h of a cell and degree p of the approximation on each cell. Examples of 10(th) degree polynomial approximations are described that substantiate the theoretical estimates. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:480 / 493
页数:14
相关论文
共 50 条
  • [1] On solenoidal high-degree polynomial approximations to solutions of the stationary Navier-Stokes equations
    Swann, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 691 - 706
  • [2] Oblivious Sketching of High-Degree Polynomial Kernels
    Ahle, Thomas D.
    Kapralov, Michael
    Knudsen, Jakob B. T.
    Pagh, Rasmus
    Velingker, Ameya
    Woodruff, David P.
    Zandieh, Amir
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 141 - 160
  • [3] Oblivious Sketching of High-Degree Polynomial Kernels
    Ahle, Thomas D.
    Kapralov, Michael
    Knudsen, Jakob B. T.
    Pagh, Rasmus
    Velingker, Ameya
    Woodruff, David P.
    Zandieh, Amir
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 141 - 160
  • [4] Computing high-degree polynomial gradients in memory
    Bhattacharya, Tinish
    Hutchinson, George H.
    Pedretti, Giacomo
    Sheng, Xia
    Ignowski, Jim
    Van Vaerenbergh, Thomas
    Beausoleil, Ray
    Strachan, John Paul
    Strukov, Dmitri B.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] High-degree polynomial models for CT simulation
    Hu, Yingkang
    Zhu, Jiehua
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2012, 20 (04) : 447 - 457
  • [6] ANALYSIS OF THE DISCONTINUOUS GALERKIN INTERIOR PENALTY METHOD WITH SOLENOIDAL APPROXIMATIONS FOR THE STOKES EQUATIONS
    Montlaur, Adeline
    Fernandez-Mendez, Sonia
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (04) : 715 - 725
  • [7] Discontinuous Galerkin methods for the Navier-Stokes equations using solenoidal approximations
    Montlaur, A.
    Fernandez-Mendez, S.
    Peraire, J.
    Huerta, A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (05) : 549 - 564
  • [8] High-degree polynomial noise subtraction for disconnected loops
    Lashomb, Paul
    Morgan, Ronald B.
    Whyte, Travis
    Wilcox, Walter
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 298
  • [9] Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier–Stokes Equations in High Dimensions
    Xiaoyutao Luo
    [J]. Archive for Rational Mechanics and Analysis, 2019, 233 : 701 - 747
  • [10] MINIMAL DEGREE SOLUTIONS OF POLYNOMIAL EQUATIONS
    GENTILI, G
    STRUPPA, D
    [J]. KYBERNETIKA, 1987, 23 (01) : 44 - 53