Origin of the colossal permittivity of (Nb plus In) co-doped rutile ceramics by wide-range dielectric spectroscopy

被引:17
|
作者
Petzelt, J. [1 ]
Nuzhnyy, D. [1 ]
Bovtun, V. [1 ]
Crandles, D. A. [2 ]
机构
[1] Czech Acad Sci, Inst Phys, Dept Dielect, Prague, Czech Republic
[2] Brock Univ, Dept Phys, St Catharines, ON, Canada
关键词
Dielectric spectroscopy; co-doped rutile ceramics; effective medium approximation; surface and internal barrier-layer capacitor effects; colossal permittivity effect; GIANT PERMITTIVITY;
D O I
10.1080/01411594.2018.1501801
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Searching for giant dipolar defects, suggested as the explanation of the colossal permittivity (CP) in (Nb + In) co-doped rutile, we have recently published (J. Appl. Phys. 119, 154105 (2016) and Phys. Rev. Mat., in press) temperature-dependent dielectric spectra from sub-Hz to THz range (including 4-point DC conductivity) of several (Nb + In) co-doped rutile ceramics. Using the model of two leaky capacitor in series below similar to 1 MHz, we estimated the depletion layer thickness and conductivity. The spectra below similar to 10 GHz were fitted with two Cole-Cole relaxations obeying the Arrhenius law, assigned to the effect of depletion layers and grain boundaries. In this paper, using effective medium models, we have for the first time modelled the spectra as a composite of semiconducting grains and substantially less-conducting grain boundaries and near-electrode depletion layers. The CP effect has been fully explained by the combination of surface and internal barrier-layer capacitor effects, without any measurable contribution from the dipolar defects.
引用
收藏
页码:932 / 941
页数:10
相关论文
共 50 条
  • [1] Wide range dielectric and infrared spectroscopy of (Nb plus In) co-doped rutile ceramics
    Bovtun, V.
    Petzelt, J.
    Kempa, M.
    Nuzhnyy, D.
    Savinov, M.
    Kamba, S.
    Yee, S. M. M.
    Crandles, D. A.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (07):
  • [2] Colossal dielectric permittivity in (Al plus Nb) co-doped rutile SnO2 ceramics with low loss at room temperature
    Song, Yongli
    Wang, Xianjie
    Zhang, Xingquan
    Qi, Xudong
    Liu, Zhiguo
    Zhang, Lingli
    Zhang, Yu
    Wang, Yang
    Sui, Yu
    Song, Bo
    APPLIED PHYSICS LETTERS, 2016, 109 (14)
  • [3] Origin of colossal dielectric response in (In plus Nb) co-doped TiO2 rutile ceramics: a potential electrothermal material
    Ke, Shanming
    Li, Tao
    Ye, Mao
    Lin, Peng
    Yuan, Wenxiang
    Zeng, Xierong
    Chen, Lang
    Huang, Haitao
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Colossal permittivity and dielectric relaxations in Tl plus Nb co-doped TiO2 ceramics
    Guo, Baochun
    Liu, Peng
    Cui, Xiulei
    Song, Yuechan
    CERAMICS INTERNATIONAL, 2018, 44 (11) : 12137 - 12143
  • [5] Colossal permittivity of (Tm plus Nb) co-doped rutile-TiO2 ceramics with ultralow dielectric loss and excellent thermal stability
    Fan, Jiangtao
    Long, Zhen
    Zhou, Haitao
    He, Gang
    Hu, Zhanggui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921
  • [6] Colossal permittivity of (Mg plus Nb) co-doped TiO2 ceramics with low dielectric loss
    Yang, Chao
    Tse, Mei-Yan
    Wei, Xianhua
    Hao, Jianhua
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (21) : 5170 - 5175
  • [7] Origin of Colossal Dielectric Permittivity in (Nb plus Ga) Co-Doped TiO2 Single Crystals
    Wang, Lei
    Liu, Xudong
    Bi, Xiaoguo
    Ma, Zhixin
    Li, Jinsheng
    Sun, Xudong
    CRYSTAL GROWTH & DESIGN, 2021, 21 (09) : 5283 - 5291
  • [8] Origin of colossal dielectric response in (In + Nb) co-doped TiO2 rutile ceramics: a potential electrothermal material
    Shanming Ke
    Tao Li
    Mao Ye
    Peng Lin
    Wenxiang Yuan
    Xierong Zeng
    Lang Chen
    Haitao Huang
    Scientific Reports, 7
  • [9] Colossal Permittivity and Dielectric Relaxations of (Nb, Al) Co-doped BaTiO3 Ceramics
    Huang Dong
    Wu Ying
    Miao Ji-Yuan
    Liu Zhi-Fu
    Li Yong-Xiang
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (02) : 219 - 224
  • [10] Colossal Dielectric Behavior of Ga plus Nb Co-Doped Rutile TiO2
    Dong, Wen
    Hu, Wanbiao
    Berlie, Adam
    Lau, Kenny
    Chen, Hua
    Withers, Ray L.
    Liu, Yun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) : 25321 - 25325