Towards the standing wave surface plasmon resonance fluorescence microscopy

被引:0
|
作者
Chung, Euiheon [1 ]
Tang, Wai Teng [2 ]
Kim, Yang-Hyo [3 ]
Sheppard, Colin J. R. [5 ]
So, Peter T. C. [3 ,4 ]
机构
[1] Harvard Mit Div Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Natl Univ Singapore, Computat & Syst Biol, Singapore, Singapore
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] Natl Univ Singapore, Div Bioengn, Singapore 117576, Singapore
来源
关键词
fluorescence microscopy; surface plasmon resonance; point-spread function; back-focal plane imaging; standing-wave; surface plasmon coupled emission;
D O I
10.1117/12.705720
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Surface plasmons are coherent oscillations of the free electrons on metal surface which can be used to improve the excitation efficiency of fluorophores due to increased field enhancement. Surface plasmon resonance fluorescence (SPRF) microscopy is a wide-field optical imaging technique that utilizes the evanescent electromagnetic field of surface plasmons to excite fluorophores near to a surface of a metal film. With the same excitation power, the field enhancement effect of the surface plasmon resonance (SPR) leads to strong fluorescence emission and thus increases the signal to noise ratio of detection. However, there have been few studies on the image formation process for SPRF in terms of its point-spread function. By imaging fluorescent microspheres with size below the diffraction limit, we obtained the point-spread function for SPRF. The SPR enhancement is confirmed by back-focal-plane imaging with various incidence angles of the excitation beam. Furthermore, we will investigate the potential of resolution enhancement by generating standing wave with two symmetric incident excitation beams toward the standing-wave surface plasmon resonance fluorescence (SW-SPRF) microscopy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices
    Tan, P. S.
    Yuan, X. -C.
    Yuan, G. H.
    Wang, Q.
    APPLIED PHYSICS LETTERS, 2010, 97 (24)
  • [2] Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves
    Chung, Euiheon
    Kim, Yang-Hyo
    Tang, Wai Teng
    Sheppard, Colin J. R.
    So, Peter T. C.
    OPTICS LETTERS, 2009, 34 (15) : 2366 - 2368
  • [3] Selective immobilization of multivalent ligands for surface plasmon resonance and fluorescence microscopy
    Gestwicki, JE
    Cairo, CW
    Mann, DA
    Owen, RM
    Kiessling, LL
    ANALYTICAL BIOCHEMISTRY, 2002, 305 (02) : 149 - 155
  • [4] Standing wave type localized surface plasmon resonance of multifold Ag nanorods
    Li, Jianghao
    Xue, Xiaotian
    Fan, Yihang
    Ma, Lingwei
    Zou, Sumeng
    Xie, Zheng
    Zhang, Zhengjun
    NANOTECHNOLOGY, 2019, 30 (05)
  • [5] Surface plasmon fluorescence microscopy: an analysis
    Somekh, MG
    JOURNAL OF MICROSCOPY-OXFORD, 2002, 206 (02): : 120 - 131
  • [6] Transmission surface plasmon resonance microscopy
    Loison, Olivier
    Fort, Emmanuel
    APPLIED PHYSICS LETTERS, 2013, 103 (13)
  • [7] Characterization of biologically relevant surfaces using imaging surface plasmon resonance and fluorescence microscopy
    Dattelbaum, AM
    Ecke, LE
    Werner, JH
    Parikh, AN
    Shreve, AP
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 500A - 500A
  • [8] Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence
    Thariani, Rahber
    Yager, Paul
    PLOS ONE, 2010, 5 (03):
  • [9] Effect of Defocus on Surface Plasmon Resonance Microscopy
    Huo Tong
    Wang Liang'an
    Wang Xue
    Sun Xiaojuan
    Sun Xuqing
    Liu Hongyao
    Huang Shangyong
    Yu Hui
    Lu Xinchao
    Huang Chengjun
    ACTA OPTICA SINICA, 2022, 42 (23)
  • [10] Recent Advances in Surface Plasmon Resonance Microscopy
    Huang, Songfeng
    Chen, Jiajie
    Zhang, Teliang
    Dai, Xiaoqi
    Wang, Xueliang
    Zhou, Jianxing
    Kong, Weifu
    Liu, Qian
    Qu, Junle
    Shao, Yonghong
    CHEMOSENSORS, 2022, 10 (12)