Sliding mode heading control for AUV based on continuous hybrid model-free and model-based reinforcement learning

被引:16
|
作者
Wang, Dianrui [1 ]
Shen, Yue [1 ]
Wan, Junhe [1 ]
Sha, Qixin [1 ]
Li, Guangliang [1 ]
Chen, Guanzhong [1 ]
He, Bo [1 ]
机构
[1] Ocean Univ China, Sch Informat Sci & Engn, Qingdao 266000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle (AUV); Model-based reinforcement learning; Model-free reinforcement learning; Deterministic policy gradient (DPG); Sliding mode control (SMC); NONLINEAR-SYSTEMS; ADAPTIVE-CONTROL; PID CONTROL; DESIGN;
D O I
10.1016/j.apor.2021.102960
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
For autonomous underwater vehicles (AUVs), control over AUV heading is of key importance to enable highperformance locomotion control. In this study, the heading control is achieved by using the robust sliding mode control (SMC) method. The performance of the controller can be seriously affected by its parameters. However, it is time-consuming and labor-intensive to manually adjust the parameters. Most of the existing methods rely on the accurate AUV model or prior knowledge, which are difficult to obtain. Therefore, this study is concerned with the problem of automatically tuning the SMC parameters through reinforcement learning (RL). First, an AUV dynamic model with and without current influence was successfully established. Second, a continuous hybrid Model-based Model-free (MbMf) RL method based on the deterministic policy gradient was introduced and explained. Then, the framework for tuning the parameters of SMC by the RL method was described. Finally, to demonstrate the robustness and effectiveness of our approach, extensive numerical simulations were conducted on the established AUV model. The results show that our method can automatically tune the SMC parameters. The performance is more effective than SMC with fixed parameters or SMC with a purely model-free learner.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hybrid control for combining model-based and model-free reinforcement learning
    Pinosky, Allison
    Abraham, Ian
    Broad, Alexander
    Argall, Brenna
    Murphey, Todd D.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (06): : 337 - 355
  • [2] Expert Initialized Hybrid Model-Based and Model-Free Reinforcement Learning
    Langaa, Jeppe
    Sloth, Christoffer
    [J]. 2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [3] Model-based and Model-free Reinforcement Learning for Visual Servoing
    Farahmand, Amir Massoud
    Shademan, Azad
    Jagersand, Martin
    Szepesvari, Csaba
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 4135 - 4142
  • [4] Model-Free Recurrent Reinforcement Learning for AUV Horizontal Control
    Huo, Yujia
    Li, Yiping
    Feng, Xisheng
    [J]. 3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [5] Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics
    Massi, Elisa
    Barthelemy, Jeanne
    Mailly, Juliane
    Dromnelle, Remi
    Canitrot, Julien
    Poniatowski, Esther
    Girard, Benoit
    Khamassi, Mehdi
    [J]. FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [6] Comparing Model-free and Model-based Algorithms for Offline Reinforcement Learning
    Swazinna, Phillip
    Udluft, Steffen
    Hein, Daniel
    Runkler, Thomas
    [J]. IFAC PAPERSONLINE, 2022, 55 (15): : 19 - 26
  • [7] EEG-based classification of learning strategies : model-based and model-free reinforcement learning
    Kim, Dongjae
    Weston, Charles
    Lee, Sang Wan
    [J]. 2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 146 - 148
  • [8] Comparative study of model-based and model-free reinforcement learning control performance in HVAC systems
    Gao, Cheng
    Wang, Dan
    [J]. JOURNAL OF BUILDING ENGINEERING, 2023, 74
  • [9] Parallel model-based and model-free reinforcement learning for card sorting performance
    Steinke, Alexander
    Lange, Florian
    Kopp, Bruno
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning
    Lehnert, Lucas
    Littman, Michael L.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21