Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes

被引:125
|
作者
Wu, Ting [1 ,2 ]
Diaz, Merritt C. [1 ]
Zheng, Yihong [2 ]
Zhou, Rongfei [2 ]
Funke, Hans H. [1 ]
Falconer, John L. [1 ]
Noble, Richard D. [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Jiangxi Normal Univ, Dept Chem & Chem Engn, Nanchang 330022, Peoples R China
关键词
Zeolite membrane; CO2/CH4; separation; N-2/CH4; Propane; PERMEATION PROPERTIES; SAPO-34; MEMBRANES; CO2; ADSORPTION; CO2/N-2; GAS; MIXTURES; PERFORMANCE; DIFFUSION; N-2;
D O I
10.1016/j.memsci.2014.09.021
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N-2/CH4, and CO2/i-butane separations at both low (270 and 350 kPa) and high (1.73 MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N-2/CH4 separation selectivities of 12 at 270 kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,80020,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N-2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N-2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350 kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N-2, and CH, permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [1] Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes
    Falconer, John
    Funke, Hans
    Noble, Richard
    Wu, Ting
    Diaz, Merritt
    Zhou, Rongfei
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [2] AlPO-18 membranes for CO2/CH4 and N2/CH4 separations
    Liu, Wen
    Tu, Ying
    Lu, Jun
    Liu, Yinuo
    Wu, Ting
    Gui, Tian
    Chen, Xiangshu
    Kita, Hidetoshi
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 348
  • [3] Isopropanol accelerated crystallization of AlPO-18 membranes for CO2/CH4 and N2/CH4 separations
    Wu, Ting
    Tu, Ying
    Liu, Wen
    Sun, Zhen
    Zhu, Meihua
    He, Xuezhong
    Gui, Tian
    Chen, Xiangshu
    Kita, Hidetoshi
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 312
  • [4] Influence of sodium ion on high-silica SSZ-13 membranes for efficient CO2/CH4 and N2/CH4 separations
    Zhou, Peipei
    Wu, Ting
    Sun, Zhen
    Liu, Yinuo
    Chen, Xinwei
    Zhu, Meihua
    Zhang, Fei
    Hu, Na
    Li, Yuqin
    Gui, Tian
    Chen, Xiangshu
    Kita, Hidetoshi
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 661
  • [5] On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes
    Cecopieri-Gomez, Martha L.
    Palacios-Alquisira, Joaquin
    Dominguez, J. M.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2007, 293 (1-2) : 53 - 65
  • [6] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    A. A. Sizova
    S. A. Grintsevich
    M. A. Kochurin
    V. V. Sizov
    E. N. Brodskaya
    [J]. Colloid Journal, 2021, 83 : 372 - 378
  • [7] Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs
    Liu, Bei
    Smit, Berend
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18): : 8515 - 8522
  • [8] Molecular Simulations of CO2/CH4, CO2/N2 and N2/CH4 Binary Mixed Hydrates
    Sizova, A. A.
    Grintsevich, S. A.
    Kochurin, M. A.
    Sizov, V. V.
    Brodskaya, E. N.
    [J]. COLLOID JOURNAL, 2021, 83 (03) : 372 - 378
  • [9] Membranes for CO2 /CH4 and CO2/N2 Gas Separation
    Chawla, Muhammad
    Saulat, Hammad
    Khan, Muhammad Masood
    Khan, Muhammad Mahmood
    Rafiq, Sikander
    Cheng, Linjuan
    Iqbal, Tanveer
    Rasheed, M. Imran
    Farooq, Muhammad Zohaib
    Saeed, Muhammad
    Ahmad, Nasir M.
    Niazi, Muhammad Bilal Khan
    Saqib, Sidra
    Jamil, Farrukh
    Mukhtar, Ahmad
    Muhammad, Nawshad
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (02) : 184 - 199
  • [10] CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks
    Wang, Xiaoqing
    Li, Libo
    Yang, Jiangfeng
    Li, Jinping
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2016, 24 (12) : 1687 - 1694