Remark on the Cauchy problem for the evolution p-Laplacian equation

被引:0
|
作者
Wang, Liangwei [1 ]
Yin, Jngxue [2 ]
Cao, Jinde [3 ,4 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, 666 Tian Xing Rd, Chongqing 404100, Peoples R China
[2] South China Normal Univ, Sch Math Sci, 55 West Zhong Shan Rd, Guangzhou 510631, Guangdong, Peoples R China
[3] Southeast Univ, Sch Math, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
[4] Southeast Univ, Res Ctr Complex Syst & Network Sci, 2 Southeast Univ Rd, Nanjing 210996, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; evolution p-Laplacian equation; Cauchy problem; propagation estimate; decay estimate; PERTURBED NLS SYSTEMS; HOMOCLINIC ORBITS; NAVIER-STOKES; CHAOS; COMPLEXITY; BEHAVIOR;
D O I
10.1186/s13660-017-1449-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the semigroup S(t) generated by the Cauchy problem of the evolution p-Laplacian equation partial derivative u/partial derivative t - div(|del u|(p-2)del u) = 0 (p > 2) is continuous form a weighted L-infinity space to the continuous space C-0(R-N). Then we use this property to reveal the fact that the evolution p-Laplacian equation generates a chaotic dynamical system on some compact subsets of C-0(R-N). For this purpose, we need to establish the propagation estimates and the space-time decay estimates for the solutions first.
引用
收藏
页数:16
相关论文
共 50 条