A note on modelling multi-degree-of-freedom vibro-impact systems using coefficient of restitution models

被引:25
|
作者
Wagg, DJ [1 ]
Bishop, SR [1 ]
机构
[1] UCL, Ctr Nonlinear Dynam & Applicat, London WC1E 6BT, England
关键词
D O I
10.1006/jsvi.2000.2940
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:176 / 184
页数:9
相关论文
共 50 条
  • [1] Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems
    Wagg, D
    NONLINEAR DYNAMICS, 2006, 43 (1-2) : 137 - 148
  • [2] Multiple Non-Smooth Events in Multi-Degree-of-Freedom Vibro-Impact Systems
    David J. Wagg
    Nonlinear Dynamics, 2006, 43 : 137 - 148
  • [3] Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises
    Wu, Y.
    Zhu, W. Q.
    PHYSICS LETTERS A, 2008, 372 (05) : 623 - 630
  • [4] Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations
    Huang, ZL
    Liu, ZH
    Zhu, WQ
    JOURNAL OF SOUND AND VIBRATION, 2004, 275 (1-2) : 223 - 240
  • [5] Exact and approximate stationary responses of multi-degree-of-freedom vibro-impact systems subject to white noise excitations
    Huang, ZL
    Liu, ZH
    Zhu, WQ
    ADVANCES IN STOCHASTIC STRUCTURAL DYNAMICS, 2003, : 223 - 230
  • [6] Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump
    Rongchun Hu
    Xudong Gu
    Zicheng Deng
    Nonlinear Dynamics, 2020, 101 : 823 - 834
  • [7] Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump
    Hu, Rongchun
    Gu, Xudong
    Deng, Zicheng
    NONLINEAR DYNAMICS, 2020, 101 (02) : 823 - 834
  • [8] A multi-degree of freedom approach to coefficient of restitution models for impact oscillators
    Wagg, DJ
    Bishop, SR
    IUTAM SYMPOSIUM ON UNILATERAL MULTIBODY CONTACTS, 2000, 72 : 145 - 154
  • [9] Chaotic invariant sets of vibro-impact systems with one degree of freedom
    S. G. Kryzhevich
    Doklady Mathematics, 2006, 74 : 676 - 677
  • [10] Chaotic invariant sets of vibro-impact systems with one degree of freedom
    Kryzhevich, S. G.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 676 - 677