Second-order fluid dynamics for the unitary Fermi gas from kinetic theory

被引:9
|
作者
Schaefer, Thomas [1 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 04期
关键词
THERMODYNAMICS; VISCOSITY;
D O I
10.1103/PhysRevA.90.043633
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compute second-order transport coefficients of the dilute Fermi gas at unitarity. The calculation is based on kinetic theory and the Boltzmann equation at second order in the Knudsen expansion. The second-order transport coefficients describe the shear stress relaxation time, nonlinear terms in the strain-stress relation, and nonlinear couplings between vorticity and strain. An exact calculation in the dilute limit gives tau(R) = eta/P, where tau(R) is the shear stress relaxation time, eta is the shear viscosity, and P is pressure. This relation is identical to the result obtained using the Bhatnagar-Gross-Krook approximation to the collision term, but other transport coefficients are sensitive to the exact collision integral.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Second order dissipative fluid dynamics from kinetic theory
    Betz, B.
    Denicol, G. S.
    Koide, T.
    Molnar, E.
    Niemi, H.
    Rischke, D. H.
    HCBM 2010 - INTERNATIONAL WORKSHOP ON HOT AND COLD BARYONIC MATTER, 2011, 13
  • [2] ON A SECOND-ORDER THOMAS-FERMI THEORY
    HANDLER, GS
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (10): : S253 - +
  • [3] SECOND-ORDER KINETIC THEORY OF STRESS FOR A DENSE GAS OF RIGID SPHERES
    MCCOY, BJ
    DAHLER, JS
    PHYSICS OF FLUIDS, 1968, 11 (10) : 2112 - &
  • [4] Quasiparticle second-order viscous hydrodynamics from kinetic theory
    Tinti, Leonardo
    Jaiswal, Amaresh
    Ryblewski, Radoslaw
    PHYSICAL REVIEW D, 2017, 95 (05)
  • [5] Shakhov-type extension of the relaxation time approximation in relativistic kinetic theory and second-order fluid dynamics
    Ambrus, Victor E.
    Molnar, Etele
    PHYSICS LETTERS B, 2024, 855
  • [6] Second-order radio frequency kinetic theory revisited: Resolving inconsistency with conventional fluid theory
    Chen, Jiale
    Gao, Zhe
    PHYSICS OF PLASMAS, 2013, 20 (08)
  • [7] Complete second-order dissipative fluid dynamics
    Betz, B.
    Henkel, D.
    Rischke, D. H.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (06)
  • [8] The mechanisms of second-order stereopsis are not unitary
    Simmons, D. R.
    Wells, A. T.
    PERCEPTION, 2000, 29 : 52 - 52
  • [9] SECOND-ORDER EFFECTS IN ELASTICITY, PLASTICITY AND FLUID DYNAMICS
    SETH, BR
    CURRENT SCIENCE, 1962, 31 (08): : 320 - &
  • [10] SECOND-ORDER EFFECTS IN ELASTICITY PLASTICITY AND FLUID DYNAMICS
    PARKUS, H
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN, 1965, 13 (04): : 145 - +