Improving chaos-based pseudo-random generators in finite-precision arithmetic

被引:15
|
作者
Tutueva, Aleksandra V. [1 ]
Karimov, Timur I. [2 ]
Moysis, Lazaros [3 ]
Nepomuceno, Erivelton G. [4 ]
Volos, Christos [3 ]
Butusov, Denis N. [2 ]
机构
[1] St Petersburg Electrotech Univ LETI, Dept Comp Aided Design, 5 Prof Popova St, St Petersburg 197376, Russia
[2] St Petersburg Electrotech Univ LETI, Youth Res Inst, 5 Prof Popova St, St Petersburg 197376, Russia
[3] Aristotle Univ Thessaloniki, Phys Dept, Lab Nonlinear Syst Circuits & Complex LaNSCom, Thessaloniki, Greece
[4] Univ Fed Sao Joao del Rei, Dept Elect Engn, Control & Modelling Grp GCOM, BR-36307352 Sao Joao Del Rei, MG, Brazil
基金
俄罗斯科学基金会;
关键词
Chaos; Pseudo-random number generator; Floating-point data type; IEEE754-2008; NIST tests;
D O I
10.1007/s11071-021-06246-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [1] Improving chaos-based pseudo-random generators in finite-precision arithmetic
    Aleksandra V. Tutueva
    Timur I. Karimov
    Lazaros Moysis
    Erivelton G. Nepomuceno
    Christos Volos
    Denis N. Butusov
    Nonlinear Dynamics, 2021, 104 : 727 - 737
  • [2] A novel chaos-based pseudo-random number generator
    Wang Lei
    Wang Fu-Ping
    Wang Zan-Ji
    ACTA PHYSICA SINICA, 2006, 55 (08) : 3964 - 3968
  • [3] Novel chaos-based pseudo-random number generator
    Wang, Lei
    Wang, Fu-Ping
    Wang, Zan-Ji
    Wuli Xuebao/Acta Physica Sinica, 2006, 55 (08): : 3964 - 3968
  • [4] Improving Pseudo-Random Generators
    Danko, Aleksander
    Danko, Wiktor
    ICBAKE: 2009 INTERNATIONAL CONFERENCE ON BIOMETRICS AND KANSEI ENGINEERING, 2009, : 163 - 166
  • [5] A Chaos-Based Pseudo-Random Bit Generator Implemented in FPGA Device
    Dabal, Pawel
    Pelka, Ryszard
    2011 IEEE 14TH INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS AND SYSTEMS (DDECS), 2011, : 151 - 154
  • [6] A hybrid chaos-based pseudo-random bit generator in VHDL-AMS
    Melosik, Michal
    Marszalek, Wieslaw
    2014 IEEE 57TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2014, : 435 - 438
  • [7] A chaos-based pseudo-random number generator and its application in voice communications
    Tang, K. W.
    Tang, Wallace K. S.
    Man, K. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03): : 923 - 933
  • [8] A Fast Chaos-Based Pseudo-Random Bit Generator Using Binary64 Floating-Point Arithmetic
    Francois, Michael
    Defour, David
    Negre, Christophe
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2014, 38 (02): : 115 - 124
  • [9] A fast chaos-based pseudo-random bit generator using binary64 floating-point arithmetic
    INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
    不详
    Informatica, 2 (115-124):
  • [10] CHAOS, PSEUDO-RANDOM NUMBER GENERATORS AND THE RANDOM-WALK PROBLEM
    SORNETTE, D
    ARNEODO, A
    JOURNAL DE PHYSIQUE, 1984, 45 (12): : 1843 - 1857