Rapid Decontamination of Chemical Warfare Agent Simulant with Thermally Activated Porous Polymer Foams

被引:20
|
作者
Balow, Robert B. [1 ]
Giles, Spencer L. [2 ]
McGann, Christopher L. [3 ]
Daniels, Grant C. [2 ]
Lundin, Jeffrey G. [2 ]
Pehrsson, Pehr E. [2 ]
Wynne, James H. [2 ]
机构
[1] US Naval Res Lab, Natl Res Council Res Associateship Program, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] US Naval Res Lab, Chem Div, 4555 Overlook Ave SW, Washington, DC 20375 USA
[3] US Naval Res Lab, Amer Soc Engn Educ Postdoctoral Fellow, 4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
POLYDICYCLOPENTADIENE; DESTRUCTION; OXIDATION; SURFACES; OXIDE;
D O I
10.1021/acs.iecr.8b01546
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Highly porous poly(dicyclopentadiene) (pDCPD) foam was synthesized via ring opening metathesis polymerization and high internal phase emulsion (HIPE) templating. Alkane and alkene moieties within the pDCPD foam oxidized slowly in air to form carbonyl, peroxy, and hydroxyl groups. Heating pDCPD to 85 degrees C in air accelerated the oxidation of pDCPD, producing reactive peroxy species at reduced time scales, compared to oxidation at room temperature. The oxidized pDCPD foams rapidly sequestered and decontaminated the toxic chemical warfare agent simulant, demeton-S via oxidation to vinyl, sulfoxide, and sulfone oxidation products. In addition, the porosity and high surface area of the pDCPD) HIPE foams likely assists in the sequestration of demeton-S via capillary interaction. Collectively, these data demonstrate a new and highly tunable class of polymer materials capable of simultaneous sequestration and decontamination of toxic chemicals.
引用
收藏
页码:8630 / 8634
页数:5
相关论文
共 50 条
  • [1] Impact of atmospheric adsorbates on chemical warfare agent simulant decontamination
    Balow, Robert
    Barlow, Daniel
    Lundin, Jeffrey
    Iordanov, Ivan
    Gordon, Wesley
    Knox, Craig
    Bermudez, Victor
    Wynne, James
    Peterson, Gregory
    Karwacki, Christopher
    Pehrsson, Pehr
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [2] Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles
    Sadeghi, Meysam
    Yekta, Sina
    Ghaedi, Hamed
    INTERNATIONAL NANO LETTERS, 2016, 6 (03) : 161 - 171
  • [3] Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles
    Meysam Sadeghi
    Sina Yekta
    Hamed Ghaedi
    International Nano Letters, 2016, 6 (3) : 161 - 171
  • [4] Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant
    Jung, Dahee
    Das, Pradipta
    Atilgan, Ahmet
    Li, Peng
    Hupp, Joseph T.
    Islamoglu, Timur
    Kalow, Julia A.
    Farha, Omar K.
    CHEMISTRY OF MATERIALS, 2020, 32 (21) : 9299 - 9306
  • [5] Multiple chemical warfare agent simulant decontamination by self-driven microplasma
    陈恕彬
    王世宇
    朱安娜
    王瑞雪
    Plasma Science and Technology, 2023, (11) : 16 - 25
  • [6] Multiple chemical warfare agent simulant decontamination by self-driven microplasma
    Chen, Shubin
    Wang, Shiyu
    Zhu, Anna
    Wang, Ruixue
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (11)
  • [7] Multiple chemical warfare agent simulant decontamination by self-driven microplasma
    陈恕彬
    王世宇
    朱安娜
    王瑞雪
    Plasma Science and Technology, 2023, 25 (11) : 16 - 25
  • [8] Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents
    McGann, Christopher L.
    Daniels, Grant C.
    Giles, Spencer L.
    Balow, Robert B.
    Miranda-Zayas, Jorge L.
    Lundin, Jeffrey G.
    Wynne, James H.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2018, 39 (12)
  • [9] Chitosan-Derived Porous Activated Carbon for the Removal of the Chemical Warfare Agent Simulant Dimethyl Methylphosphonate
    Yu, Hyejin
    Son, Ye Rim
    Yoo, Hyeonji
    Cha, Hyun Gil
    Lee, Hangil
    Kim, Hyun Sung
    NANOMATERIALS, 2019, 9 (12)
  • [10] Chemical warfare agent degradation and decontamination
    Talmage, S. S.
    Watson, A. P.
    Hauschild, V.
    Munro, N. B.
    King, J.
    CURRENT ORGANIC CHEMISTRY, 2007, 11 (03) : 285 - 298