A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations

被引:14
|
作者
Kaygorodov, Ivan [1 ,2 ,3 ]
Popov, Yu. [3 ,4 ]
机构
[1] Univ Fed ABC, CMCC, Santo Andre, Brazil
[2] Univ Sao Paulo, BR-05508 Sao Paulo, Brazil
[3] Sobolev Inst Math, Novosibirsk, Russia
[4] Novosibirsk State Univ, Novosibirsk, Russia
基金
巴西圣保罗研究基金会;
关键词
Leibniz derivation; Malcev algebra; Jordan algebra; (-1,1)-Algebra; Nilpotent algebra; LIE-ALGEBRAS; NONSINGULAR DERIVATIONS; GENERALIZED DERIVATIONS; P-GROUPS; ORDERS; PREDERIVATIONS;
D O I
10.1016/j.jalgebra.2016.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moens proved that a finite-dimensional Lie algebra over a field of characteristic zero is nilpotent if and only if it has an invertible Leibniz-derivation. In this article we prove the analogous results for finite-dimensional Malcev, Jordan, (-1,1)-, right alternative, Zinbiel and Malcev-admissible noncommutative Jordan algebras over a field of characteristic zero. Also, we describe all Leibniz-derivations of semisimple Jordan, right alternative and Malcev algebras. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [1] A CHARACTERISATION OF NILPOTENT LIE ALGEBRAS BY INVERTIBLE LEIBNIZ-DERIVATIONS
    Moens, Wolfgang Alexander
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2427 - 2440
  • [2] A Characterization of Nilpotent Leibniz Algebras
    Alice Fialowski
    A. Kh. Khudoyberdiyev
    B. A. Omirov
    Algebras and Representation Theory, 2013, 16 : 1489 - 1505
  • [3] Almost Inner Derivations of Some Nilpotent Leibniz Algebras
    Adashev, Zhobir K.
    Kurbanbaev, Tuuelbay K.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (06): : 733 - 745
  • [4] A Characterization of Nilpotent Leibniz Algebras
    Fialowski, Alice
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1489 - 1505
  • [5] On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Mykola M.
    Subbotin, Igor Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02): : 244 - 261
  • [6] Leibniz algebras with derivations
    Apurba Das
    Journal of Homotopy and Related Structures, 2021, 16 : 245 - 274
  • [7] On derivations of Leibniz algebras
    Misra, Kailash C.
    Patlertsin, Sutida
    Pongprasert, Suchada
    Rungratgasame, Thitarie
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4715 - 4722
  • [8] Leibniz algebras with derivations
    Das, Apurba
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2021, 16 (02) : 245 - 274
  • [9] Alternative algebras admitting derivations with invertible values and invertible derivations
    Kaygorodov, I. B.
    Popov, Yu. S.
    IZVESTIYA MATHEMATICS, 2014, 78 (05) : 922 - 936