Generalized Isotonized Mean Estimators for Judgment Post-stratification with Multiple Rankers

被引:6
|
作者
Chen, Min [1 ]
Ahn, Soohyun [2 ]
Wang, Xinlei [3 ]
Lim, Johan [2 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Dallas, TX 75230 USA
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[3] So Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
基金
新加坡国家研究基金会;
关键词
Best linear unbiased estimator; Generalized isotonic regression; Matrix partial order; Simple stochastic order; Ranked set sampling; Raking; Relative efficiency;
D O I
10.1007/s13253-014-0178-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a set of new mean estimators for judgment post-stratified data with multiple rankers. The new estimators take into account matrix partial ordering in cumulative distribution functions of rank strata, and they are derived by improving existing estimators through employing the order constraints and solving a generalized isotonic regression problem. Numerical studies show that the proposed isotonized mean estimators outperform the existing estimators. Finally, the proposed estimators are applied to estimating the average tree height using the tree data in Chen et al. (Ranked set sampling: theory and applications, Springer, New York, 2006).
引用
收藏
页码:405 / 418
页数:14
相关论文
共 25 条
  • [1] Generalized Isotonized Mean Estimators for Judgment Post-stratification with Multiple Rankers
    Min Chen
    Soohyun Ahn
    Xinlei Wang
    Johan Lim
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19 : 405 - 418
  • [2] An improved mean estimator for judgment post-stratification
    Frey, Jesse
    Feeman, Timothy G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 418 - 426
  • [3] Constrained estimation using judgment post-stratification
    Jesse Frey
    Omer Ozturk
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 769 - 789
  • [4] Variance estimation using judgment post-stratification
    Jesse Frey
    Timothy G. Feeman
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 551 - 569
  • [5] Variance estimation using judgment post-stratification
    Frey, Jesse
    Feeman, Timothy G.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (03) : 551 - 569
  • [6] Estimation of population proportion for judgment post-stratification
    Zamanzade, Ehsan
    Wang, Xinlei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 257 - 269
  • [7] Constrained estimation using judgment post-stratification
    Frey, Jesse
    Ozturk, Omer
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (04) : 769 - 789
  • [8] A family of estimators of population mean using multi-auxiliary variate and post-stratification
    Vishwakarma, Gajendra K.
    Singh, Housila P.
    Singh, Sarjinder
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (02): : 233 - 253
  • [9] Analysis of Ordinal Populations from Judgment Post-Stratification
    Alvandi, Amirhossein
    Hatefi, Armin
    [J]. STATS, 2023, 6 (03): : 812 - 838
  • [10] Multiple inverse sampling in post-stratification
    Chang, KC
    Liu, JF
    Han, CP
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 69 (02) : 209 - 227