Assessment of the thermoelectric performance of layered semiconductor SrFCuTe with wide band-gap

被引:8
|
作者
Jiang, Yumei [1 ]
Zhang, Yuting [1 ]
Xing, Juanjuan [1 ]
Hu, Yibin [1 ]
Yang, Xinxin [1 ]
Zhang, Jiye [1 ]
Guo, Kai [1 ]
Luo, Jun [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Wide-band-gap semiconductor; Layered compound; SrFCuTe; p-type doping; Thermoelectric properties; THERMAL-CONDUCTIVITY; ENERGY;
D O I
10.1016/j.jssc.2021.122169
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The concept of "phonon-glass, electron-crystal" promotes the development of designing thermoelectric compounds through building functional blocks. Alternately stacking insulating [Sr2F2](2+) layers and conductive [Cu2Te2](2-) layers along the c-axis can construct wide-band-gap semiconductor SrFCuTe with the ZrCuSiAs-type structure. The thermoelectric characterization reveal that this compound has considerably low p-type conductivity and thermal conductivity. Na substitution Sr can significantly improve the electrical transport properties due to the acceptor-doping effect, while it increases the electronic thermal conductivity simultaneously. The synergistic effect makes the thermoelectric figure of merit zT rise about 100% at 773 K. This work demonstrates that wide-band-gap semiconductors undergoing rational performance manipulation, worthy of reassessing for thermoelectric application.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Wide band-gap power semiconductor devices
    Millan, J.
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (05) : 372 - 379
  • [2] Optical Properties of Wide Band-Gap Semiconductor ZnMgSTe
    Shiomi, Shoma
    Arima, Kei
    Kawai, Miho
    Ohno, Hiroto
    Iwahashi, Kazuma
    Akaiwa, Kazuaki
    Abe, Tomoki
    Ichino, Kunio
    [J]. Zairyo/Journal of the Society of Materials Science, Japan, 2024, 73 (10) : 774 - 777
  • [3] Performance evaluation of high-power wide band-gap semiconductor rectifiers
    Trivedi, M
    Shenai, K
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 85 (09) : 6889 - 6897
  • [4] Transmission electron microscopy of wide band-gap semiconductor layers
    Pécz, B
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 195 (01): : 214 - 221
  • [5] ELECTRON-PHONON INTERACTIONS IN THE WIDE BAND-GAP SEMICONDUCTOR GAN
    SHEIH, SJ
    TSEN, KT
    FERRY, DK
    BOTCHKAREV, A
    SVERDLOV, B
    SALVADOR, A
    MORKOC, H
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (12) : 1757 - 1759
  • [6] Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals
    Liu, Yongsheng
    Luo, Wenqin
    Zhu, Haomiao
    Chen, Xueyuan
    [J]. JOURNAL OF LUMINESCENCE, 2011, 131 (03) : 415 - 422
  • [7] Aluminum Nitride Wide Band-gap Semiconductor and Its Basic Characteristics
    Fu, Xinru
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 555 - 558
  • [8] Wide band-gap seismic metastructures
    Kroedel, S.
    Thome, N.
    Daraio, C.
    [J]. EXTREME MECHANICS LETTERS, 2015, 4 : 111 - 117
  • [9] Templated wide band-gap nanostructures
    Alizadeh, A.
    Sharma, P.
    Ganti, S.
    LeBoeuf, S.F.
    Tsakalakos, L.
    [J]. Journal of Applied Physics, 2004, 95 (12): : 8199 - 8206
  • [10] Photoinduced electron accumulation in colloidally dispersed wide band-gap semiconductor nanosheets
    Nakato, Teruyuki
    Yamada, Yoshimi
    Nakamura, Mari
    Takahashi, Atsushi
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 354 (01) : 38 - 44