Crustal structure of the Peruvian continental margin from wide-angle seismic studies

被引:50
|
作者
Krabbenhöft, A
Bialas, J
Kopp, H
Kukowski, N
Hübscher, C
机构
[1] Leibniz Inst Marine Sci, IFM GEOMAR, D-24148 Kiel, Germany
[2] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany
[3] Univ Hamburg, Inst Geophys, Ctr Marine & Climate Res, D-20146 Hamburg, Germany
关键词
continental margin; forward model; Peru; subduction zone; velocity model; wide-angle seismic data;
D O I
10.1111/j.1365-246X.2004.02425.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8 S to 15 S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0200 m, has an average thickness of 6.4 km. At 8S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5-6.0 km s(-1). The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.
引用
收藏
页码:749 / 764
页数:16
相关论文
共 50 条
  • [1] The Hatton basin and continental margin: Crustal structure from wide-angle seismic and gravity data
    Vogt, U
    Makris, J
    O'Reilly, BM
    Hauser, F
    Readman, PW
    Jacob, AWB
    Shannon, PM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B6) : 12545 - 12566
  • [2] The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data
    Contrucci, I
    Klingelhöfer, F
    Perrot, J
    Bartolome, R
    Gutscher, MA
    Sahabi, M
    Malod, J
    Rehault, JP
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 159 (01) : 117 - 128
  • [3] Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles
    Ruiz, M.
    Diaz, J.
    Pedreira, D.
    Gallar, J.
    Pulgar, J. A.
    [J]. TECTONOPHYSICS, 2017, 717 : 65 - 82
  • [4] Crustal structure and variation in the southwest continental margin of the South China Sea: Evidence from a wide-angle seismic profile
    Wei, Xiaodong
    Ruan, Aiguo
    Ding, Weiwei
    Wu, Zhaocai
    Dong, Chongzhi
    Zhao, Yanghui
    Niu, Xiongwei
    Zhang, Jie
    Wang, Chunyang
    [J]. JOURNAL OF ASIAN EARTH SCIENCES, 2020, 203
  • [5] The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data
    Watremez, L.
    Leroy, S.
    Rouzo, S.
    d'Acremont, E.
    Unternehr, P.
    Ebinger, C.
    Lucazeau, F.
    Al-Lazki, A.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 184 (02) : 575 - 594
  • [6] Crustal structure at the SE Greenland margin from wide-angle and normal incidence seismic data
    Dahl-Jensen, T.
    Thybo, H.
    Hopper, J.
    Rosing, M.
    [J]. Tectonophysics, 288 (01):
  • [7] Crustal structure at the SE Greenland margin from wide-angle and normal incidence seismic data
    Dahl-Jensen, T
    Thybo, H
    Hopper, J
    Rosing, M
    [J]. TECTONOPHYSICS, 1998, 288 (1-4) : 191 - 198
  • [8] Crustal structure of the Java']Java margin from seismic wide-angle and multichannel reflection data
    Kopp, H
    Klaeschen, D
    Flueh, ER
    Bialas, J
    Reichert, C
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B2)
  • [9] Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the DAKHLA experiment) Part A: Wide-angle seismic models
    Klingelhoefer, F.
    Labails, C.
    Cosquer, E.
    Rouzo, S.
    Geli, L.
    Aslanian, D.
    Olivet, J. -L.
    Sahabi, M.
    Nouze, H.
    Unternehr, P.
    [J]. TECTONOPHYSICS, 2009, 468 (1-4) : 63 - 82
  • [10] Otway Continental Margin Transect: crustal architecture from wide-angle seismic profiling across Australia's southern margin
    Finlayson, DM
    Lukaszyk, I
    Collins, CDN
    Chudyk, EC
    [J]. AUSTRALIAN JOURNAL OF EARTH SCIENCES, 1998, 45 (05) : 717 - 732