Proof of the combinatorial nullstellensatz over integral domains, in the spirit of Kouba

被引:0
|
作者
Heinig, Peter [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, Lehr & Forsch Seinheit Angew Geometrie & Diskrete, Boltzmannstr 3, D-85748 Garching, Germany
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that by eliminating duality theory of vector spaces from a recent proof of Kouba [ A duality based proof of the Combinatorial Nullstellensatz, Electron. J. Combin. 16 ( 2009), #N9] one obtains a direct proof of the nonvanishing-version of Alon's Combinatorial Nullstellensatz for polynomials over an arbitrary integral domain. The proof relies on Cramer's rule and Vandermonde's determinant to explicitly describe a map used by Kouba in terms of cofactors of a certain matrix. That the Combinatorial Nullstellensatz is true over integral domains is a well known fact which is already contained in Alon's work and emphasized in recent articles of Michalek and Schauz; the sole purpose of the present note is to point out that not only is it not necessary to invoke duality of vector spaces, but by not doing so one easily obtains a more general result.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A COMBINATORIAL PROOF OF THE EFFECTIVE NULLSTELLENSATZ
    DUBE, TW
    JOURNAL OF SYMBOLIC COMPUTATION, 1993, 15 (03) : 277 - 296
  • [2] A Short Proof of Combinatorial Nullstellensatz
    Michalek, Mateusz
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (09): : 821 - 823
  • [3] A duality based proof of the Combinatorial Nullstellensatz
    Kouba, Omran
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [4] Combinatorial Nullstellensatz over division rings
    Elad Paran
    Journal of Algebraic Combinatorics, 2023, 58 : 895 - 911
  • [5] Combinatorial Nullstellensatz over division rings
    Paran, Elad
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (03) : 895 - 911
  • [6] Combinatorial proof of Selberg's integral formula
    Haupt, Alexander M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [7] Cost Sharing over Combinatorial Domains
    Birmpas, Georgios
    Markakis, Evangelos
    Schaefer, Guido
    ACM TRANSACTIONS ON ECONOMICS AND COMPUTATION, 2022, 10 (01)
  • [8] Reasoning with Preference Trees over Combinatorial Domains
    Liu, Xudong
    Truszczynski, Miroslaw
    ALGORITHMIC DECISION THEORY, ADT 2015, 2015, 9346 : 19 - 34
  • [9] POLE PLACEMENT OVER INTEGRAL DOMAINS
    WYMAN, BF
    COMMUNICATIONS IN ALGEBRA, 1978, 6 (10) : 969 - 993
  • [10] Krull modules over integral domains
    Nurwigantara, Mu'amar Musa
    Wijayanti, Indah Emilia
    Marubayashi, Hidetoshi
    Wahyuni, Sri
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (02)