A study on a low power optimization algorithm for an edge-AI device

被引:5
|
作者
Kaneko, Tatsuya [1 ]
Orimo, Kentaro [1 ]
Hida, Itaru [1 ]
Takamaeda-Yamazaki, Shinya [1 ]
Ikebe, Masayuki [1 ]
Motomura, Masato [1 ]
Asai, Tetsuya [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol IST, Div Elect Informat, Kita Ku, M BLDG 2F,Kita 14,Nishi 9, Sapporo, Hokkaido 0600814, Japan
来源
关键词
machine learning; edge AI; training algorithm; backpropagation; quantization; low power; GRADIENT;
D O I
10.1587/nolta.10.373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Although research on the inference phase of edge artificial intelligence (AI) has made considerable improvement, the required training phase remains an unsolved problem. Neural network (NN) processing has two phases: inference and training. In the training phase, a NN incurs high calculation cost. The number of bits (bitwidth) in the training phase is several orders of magnitude larger than that in the inference phase. Training algorithms, optimized to software, are not appropriate for training hardware-oriented NNs. Therefore, we propose a new training algorithm for edge AI: backpropagation (BP) using a ternarized gradient. This ternarized backpropagation (TBP) provides a balance between calculation cost and performance. Empirical results demonstrate that in a two-class classification task, TBP works well in practice and compares favorably with 16-bit BP (Fixed-BP).
引用
收藏
页码:373 / 389
页数:17
相关论文
共 50 条
  • [1] Low-power Memristor-based Computing for Edge-AI Applications
    Singh, Abhairaj
    Diware, Sumit
    Gebregiorgis, Anteneh
    Bishnoi, Rajendra
    Catthoor, Francky
    Joshi, Rajiv, V
    Hamdioui, Said
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [2] Toward Robust Facial Authentication for Low-Power Edge-AI Consumer Devices
    Yao, Wang
    Varkarakis, Viktor
    Costache, Gabriel
    Lemley, Joseph
    Corcoran, Peter
    IEEE ACCESS, 2022, 10 : 123661 - 123678
  • [3] The Future of Consumer Edge-AI Computing
    Laskaridis, Stefanos
    Venieris, Stylianos I.
    Kouris, Alexandros
    Li, Rui
    Lane, Nicholas D.
    IEEE PERVASIVE COMPUTING, 2024, : 21 - 30
  • [4] Edge-AI Platform for Realtime Wildlife Repelling
    Tamburello, Marialaura
    Caruso, Giuseppe
    Giordano, Stefano
    Adami, Davide
    Ojo, Mike
    MELECON 2022 - IEEE Mediterranean Electrotechnical Conference, Proceedings, 2022, : 80 - 84
  • [5] Edge-AI Implementation for Milk Adulteration Detection
    Mhapsekar, Rahul Umesh
    Abraham, Lizy
    O'Shea, Norah
    Davy, Steven
    2022 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2022, : 108 - 113
  • [6] Special Section on Edge-AI for Connected Living
    Hossain, M. Shamim
    Xu, Changsheng
    Bilbao, Josu
    Rahman, Md Abdur
    El Saddik, Abdulmotaleb
    Bin Zayed, Mohamed
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (03)
  • [7] Edge-AI Platform for Realtime Wildlife Repelling
    Tamburello, Marialaura
    Caruso, Giuseppe
    Giordano, Stefano
    Adami, Davide
    Ojo, Mike
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 80 - 84
  • [8] Efficient Edge-AI Application Deployment for FPGAs
    Kalapothas, Stavros
    Flamis, Georgios
    Kitsos, Paris
    INFORMATION, 2022, 13 (06)
  • [9] Functionality Enhanced Memories for Edge-AI Embedded Systems
    Levisse, Alexandre
    Rios, Marco
    Simon, W-A
    Gaillardon, P-E
    Atienza, D.
    2019 19TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS 2019), 2019,
  • [10] NeuroPilot: A Cross-Platform Framework for Edge-AI
    Chen, Tung-Chien
    Wang, Wei-Ting
    Kao, Kloze
    Yu, Chia-Lin
    Lin, Code
    Chang, Shu-Hsin
    Tsung, Pei-Kuei
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 167 - 170