On the Schwarz alternating method for eigenvalue problems

被引:7
|
作者
Maliassov, SY [1 ]
机构
[1] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1515/rnam.1998.13.1.45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an analogue of the Schwarz alternating method is considered and a minimal eigenvalue and its corresponding eigenvector of the generalized symmetric eigenvalue problem are found. The technique suggested is based on decomposition of the original domain into overlapping subdomains and on consideration of local eigenvalue problems in subdomains. Both multiplicative and additive variations of the method are constructed and studied. It is shown that a discretization of the multiplicative variation of the Schwarz method is equivalent to the block coordinate relaxation method. An additive variation of the method is suitable for realization on parallel architecture.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [1] THE SCHWARZ ALTERNATING METHOD FOR SINGULARITY PROBLEMS
    LI, ZC
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (05): : 1064 - 1082
  • [2] On the Schwarz Alternating Method for Solving Electromagnetic Problems
    Gnatyuk, M. A.
    Morozov, V. M.
    [J]. 2015 XXTH IEEE INTERNATIONAL SEMINAR/WORKSHOP ON DIRECT AND INVERSE PROBLEMS OF ELECTROMAGNETIC AND ACOUSTIC WAVE THEORY, 2015, : 132 - 135
  • [3] SCHWARZ ALTERNATING METHOD AND MULTIGRID METHOD
    SHAO, JP
    [J]. ACTA MATHEMATICA SCIENTIA, 1987, 7 (03) : 247 - 257
  • [4] SCHWARZ ALTERNATING METHOD AND MULTIGRID METHOD
    邵建平
    [J]. Acta Mathematica Scientia, 1987, (03) : 247 - 257
  • [5] The Origins of the Alternating Schwarz Method
    Gander, Martin J.
    Wanner, Gerhard
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 487 - 495
  • [6] An overdetermined Schwarz alternating method
    Sun, HS
    Tang, WP
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04): : 884 - 905
  • [7] Solving two-parameter eigenvalue problems using an alternating method
    Eisenmann, Henrik
    Nakatsukasa, Yuji
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 643 : 137 - 160
  • [8] On handling the boundary conditions at the infinity for some exterior problems by the alternating Schwarz method
    Ben Belgacem, F
    Gmati, N
    Fournié, M
    Jelassi, F
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 325 - 330
  • [9] On handling the boundary conditions at infinity for some exterior problems by the alternating Schwarz method
    Ben Belgacem, F
    Fournié, M
    Gmati, N
    Jelassi, F
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) : 277 - 282
  • [10] ON THE SCHWARZ ALTERNATING METHOD WITH MORE THAN 2 SUBDOMAINS FOR NONLINEAR MONOTONE PROBLEMS
    BADEA, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) : 179 - 204