Sequence-to-sequence Models for Cache Transition Systems

被引:0
|
作者
Peng, Xiaochang [1 ]
Song, Linfeng [1 ]
Gildea, Daniel [1 ]
Satta, Giorgio [2 ]
机构
[1] Univ Rochester, Rochester, NY 14627 USA
[2] Univ Padua, Padua, Italy
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a sequence-to-sequence based approach for mapping natural language sentences to AMR semantic graphs. We transform the sequence to graph mapping problem to a word sequence to transition action sequence problem using a special transition system called a cache transition system. To address the sparsity issue of neural AMR parsing, we feed feature embeddings from the transition state to provide relevant local information for each decoder state. We present a monotonic hard attention model for the transition framework to handle the strictly left-to-right alignment between each transition state and the current buffer input focus. We evaluate our neural transition model on the AMR parsing task, and our parser outperforms other sequence-to-sequence approaches and achieves competitive results in comparison with the best-performing models.(1)
引用
收藏
页码:1842 / 1852
页数:11
相关论文
共 50 条
  • [1] Sparse Sequence-to-Sequence Models
    Peters, Ben
    Niculae, Vlad
    Martins, Andre F. T.
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1504 - 1519
  • [2] Assessing incrementality in sequence-to-sequence models
    Ulmer, Dennis
    Hupkes, Dieuwke
    Bruni, Elia
    4TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (REPL4NLP-2019), 2019, : 209 - 217
  • [3] An Analysis of "Attention" in Sequence-to-Sequence Models
    Prabhavalkar, Rohit
    Sainath, Tara N.
    Li, Bo
    Rao, Kanishka
    Jaitly, Navdeep
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3702 - 3706
  • [4] Sequence-to-sequence prediction of spatiotemporal systems
    Shen, Guorui
    Kurths, Juergen
    Yuan, Ye
    CHAOS, 2020, 30 (02)
  • [5] Deep Reinforcement Learning for Sequence-to-Sequence Models
    Keneshloo, Yaser
    Shi, Tian
    Ramakrishnan, Naren
    Reddy, Chandan K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2469 - 2489
  • [6] Sequence-to-Sequence Models for Automated Text Simplification
    Botarleanu, Robert-Mihai
    Dascalu, Mihai
    Crossley, Scott Andrew
    McNamara, Danielle S.
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 : 31 - 36
  • [7] Sequence-to-Sequence Models for Emphasis Speech Translation
    Quoc Truong Do
    Sakti, Sakriani
    Nakamura, Satoshi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (10) : 1873 - 1883
  • [8] On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models
    Michel, Paul
    Li, Xian
    Neubig, Graham
    Pino, Juan Miguel
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 3103 - 3114
  • [9] On Sparsifying Encoder Outputs in Sequence-to-Sequence Models
    Zhang, Biao
    Titov, Ivan
    Sennrich, Rico
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2888 - 2900
  • [10] A Comparison of Sequence-to-Sequence Models for Speech Recognition
    Prabhavalkar, Rohit
    Rao, Kanishka
    Sainath, Tara N.
    Li, Bo
    Johnson, Leif
    Jaitly, Navdeep
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 939 - 943