STABILITY AND HOLDER REGULARITY OF SOLUTIONS TO COMPLEX MONGE-AMPERE EQUATIONS ON COMPACT HERMITIAN MANIFOLDS

被引:0
|
作者
Lu, Chinh H. [1 ]
Trong-Thuc Phung [2 ]
To, Tat-Dat [3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Ho Chi Minh City Univ Technol, VNU HCM, Ho Chi Minh City, Vietnam
[3] Univ Toulouse, Ecole Natl Aviat Civile, 7 Ave Edouard Belin, FR-31055 Toulouse 04, France
[4] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, France
关键词
Hermitian manifold; Complex Monge-Ampere equation; Stability; Comparison principle; ENVELOPES; CURRENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, omega) be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in L-p, p > 1. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case by Demailly-Dinew-Guedj-Kolodziej-Pham-Zeriahi. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.
引用
收藏
页码:2019 / 2045
页数:28
相关论文
共 50 条