Evaluation of flavonoids as potential inhibitors of the SARS-CoV-2 main protease and spike RBD: Molecular docking, ADMET evaluation and molecular dynamics simulations

被引:7
|
作者
Hadni, Hanine [1 ]
Fitri, Asmae [1 ]
Benjelloun, Adil Touimi [1 ]
Benzakour, Mohammed [1 ]
Mcharfi, Mohammed [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, LIMAS, Fes, Morocco
关键词
SARS-CoV-2; Molecular docking; Flavonoid family; ADMET properties; Druglikeness; Molecular dynamics simulation; MM-GBSA study; GERANYLATED FLAVONOIDS; COVID-19; PERFORMANCE; SELECTION;
D O I
10.1016/j.jics.2022.100697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The 3CLpro main protease and the RDB spike (s) protein of SARS-CoV-2 are critical targets in the treatment of coronavirus 19 disease (COVID-19), as they are responsible for the COVID-19 replication and infection. With this in mind, Molecular docking of 26 natural compounds belonging to the flavonoid family with the 3CLpro and RBD sites of SARS-CoV-2 has been performed. The docking results revealed that the ligands Silibinin, Tomentin A, Tomentin B, 4'-O-methyldiplacone, Hesperidin Amentoflavone and Bilobetin act as a potential inhibitor of SARS-CoV-2 3CLpro, and that the ligands Herbacetin, Morin, Silibinin, Tomentin E, Amentoflavone, Bilobetin, Bai-calein and Quercetin can be potential inhibitors of SARS-CoV-2 RBD. It has been noticed that three ligands can inhibit both sites of SARS-CoV-2, indicating a great potential of these compounds to combat COVID-19. More-over, molecular docking has been validated by a new validation method based on visual inspiration. Evaluation of ADMET pharmacokinetic properties and the drug likeness in silico revealed that six compounds could be effective drugs against COVID-19. Finally, the docking results were verified by molecular dynamics simulations and MM-GBSA calculation to confirm the stability of hydrogen bonding interactions with crucial residues, which are essential to overcome SARS-CoV-2. These results could direct researchers toward plant-derived compounds that could be further investigated as therapeutic targets against COVID-19 replication and infection.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation
    Antonopoulou, Io
    Sapountzaki, Eleftheria
    Rova, Ulrika
    Christakopoulos, Paul
    [J]. BIOMEDICINES, 2022, 10 (08)
  • [2] Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations
    Masand, Vijay H.
    Sk, Md Fulbabu
    Kar, Parimal
    Rastija, Vesna
    Zaki, Magdi E. A.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 217
  • [3] Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies
    Cherrak, Sabri Ahmed
    Merzouk, Hafida
    Mokhtari-Soulimane, Nassima
    [J]. PLOS ONE, 2020, 15 (10):
  • [4] Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations
    Lazniewski, Michal
    Dermawan, Doni
    Hidayat, Syahrul
    Muchtaridi, Muchtaridi
    Dawson, Wayne K.
    Plewczynski, Dariusz
    [J]. METHODS, 2022, 203 : 498 - 510
  • [5] Discovery of genistein derivatives as potential SARS-CoV-2 main protease inhibitors by virtual screening, molecular dynamics simulations and ADMET analysis
    Liu, Jiawei
    Zhang, Ling
    Gao, Jian
    Zhang, Baochen
    Liu, Xiaoli
    Yang, Ninghui
    Liu, Xiaotong
    Liu, Xifu
    Cheng, Yu
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [6] Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies
    Tatar, Gizem
    Salmanli, Merve
    Dogru, Yakup
    Tuzuner, Tamer
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (17): : 7656 - 7665
  • [7] Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors
    Cardoso, Wesley B.
    Mendanha, Sebastiao A.
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2021, 1225
  • [8] Molecular docking, molecular dynamics simulation, and ADMET analysis of levamisole derivatives against the SARS-CoV-2 main protease (MPro)
    El Khatabi, Khalil
    Aanouz, Ilham
    Alaqarbeh, Marwa
    Ajana, Mohammed Aziz
    Lakhifi, Tahar
    Bouachrine, Mohammed
    [J]. BIOIMPACTS, 2022, 12 (02) : 107 - 113
  • [9] Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations
    Oubahmane, Mehdi
    Hdoufane, Ismail
    Delaite, Christelle
    Sayede, Adlane
    Cherqaoui, Driss
    El Allali, Achraf
    [J]. PHARMACEUTICALS, 2023, 16 (04)
  • [10] Molecular Docking Unveils Prospective Inhibitors for the SARS-COV-2 Main Protease
    Ahmad, Fawad
    Ikram, Saima
    Ahmad, Jamshaid
    Rehman, Irshad Ur
    Khattak, Saeed Ullah
    Butt, Sadia
    Mushtaq, Maryam
    [J]. SAINS MALAYSIANA, 2021, 50 (05): : 1473 - 1484