Integrating wavelet transformation with Markov random field analysis for the depth estimation of light-field images

被引:6
|
作者
Lee, Wei-Yu [1 ]
Li, Chi-Ying [1 ]
Yen, Jia-Yush [1 ]
机构
[1] Natl Taiwan Univ, Dept Mech Engn, 1 Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
关键词
wavelet transforms; Markov processes; image segmentation; image reconstruction; cameras; wavelet transformation; Markov random field analysis; light-field image depth estimation; three-dimensional depth data recovery; light-field camera; depth information extraction; angular gradients; spatial gradients; epipolar plane image; EPI slope; multiscale analysis; smart segmentation; surface reconstruction; noise contaminated image; STEREO;
D O I
10.1049/iet-cvi.2016.0151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study addresses the problem of recovering the three-dimensional depth data from the images taken by a light-field camera. Unlike the conventional approach to extract the depth information from the spatial and the angular gradients in the epipolar plane images (EPIs), this study proposes to check the similarity between the pixels for the estimation of EPI slopes and use a wavelet transformation augmented multi-scale analysis to perform smart segmentations. The Markov random field is then applied for surface reconstruction. The proposed algorithm offers significant improvement to the depth estimation, especially for noise contaminated images. Application of the method on the light-field images and on synthesised data show that the proposed method is robust against the noise and achieves better estimation results compared with the available literature.
引用
收藏
页码:358 / 367
页数:10
相关论文
共 50 条
  • [1] Robust depth estimation for multi-occlusion in light-field images
    Ai, Wei
    Xiang, Sen
    Yu, Li
    [J]. OPTICS EXPRESS, 2019, 27 (17) : 24793 - 24807
  • [2] Exploiting Sequence Analysis for Accurate Light-Field Depth Estimation
    Han, Lei
    Zheng, Shengnan
    Shi, Zhan
    Xia, Mingliang
    [J]. IEEE ACCESS, 2023, 11 : 74657 - 74670
  • [3] Depth Estimation for Glossy Surfaces with Light-Field Cameras
    Tao, Michael W.
    Wang, Ting-Chun
    Malik, Jitendra
    Ramamoorthi, Ravi
    [J]. COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 : 533 - 547
  • [4] Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks
    Rogge, Segolene
    Schiopu, Ionut
    Munteanu, Adrian
    [J]. SENSORS, 2020, 20 (21) : 1 - 20
  • [5] High quality depth map estimation of object surface from light-field images
    Liu, Fei
    Hou, Guangqi
    Sun, Zhenan
    Tan, Tieniu
    [J]. NEUROCOMPUTING, 2017, 252 : 3 - 16
  • [6] Analysis of error propagation: from raw light-field data to depth estimation
    Xu, Shengming
    Shi, Shengxian
    [J]. APPLIED OPTICS, 2023, 62 (33) : 8704 - 8715
  • [7] Depth Estimation with Occlusion Modeling Using Light-Field Cameras
    Wang, Ting-Chun
    Efros, Alexei A.
    Ramamoorthi, Ravi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2170 - 2181
  • [8] DEPTH ESTIMATION BY ANALYZING INTENSITY DISTRIBUTION FOR LIGHT-FIELD CAMERAS
    Xu, Yatong
    Jin, Xin
    Dai, Qionghai
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3540 - 3544
  • [9] Light-field compression using a pair of steps and depth estimation
    Huang, Xinpeng
    An, Ping
    Cao, Fengyin
    Liu, Deyang
    Wu, Qiang
    [J]. OPTICS EXPRESS, 2019, 27 (03): : 3557 - 3573
  • [10] Light-field depth estimation considering plenoptic imaging distortion
    Cai, Zewei
    Liu, Xiaoli
    Pedrini, Giancarlo
    Osten, Wolfgang
    Peng, Xiang
    [J]. OPTICS EXPRESS, 2020, 28 (03): : 4156 - 4168