Dynamic Peierls-Nabarro equations for elastically isotropic crystals

被引:39
|
作者
Pellegrini, Yves-Patrick [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
EDGE DISLOCATION; NONUNIFORM MOTION; TRANSIENT MOTION; STRESS; FIELDS; MODEL; STABILITY; MOBILITY; SPEED;
D O I
10.1103/PhysRevB.81.024101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamic generalization of the Peierls-Nabarro equation for dislocations cores in an isotropic elastic medium is derived for screw and edge dislocations of the "glide" and "climb" type, by means of Mura's eigenstrains method. These equations are of the integrodifferential type and feature a nonlocal kernel in space and time. The equation for the screw differs by an instantaneous term from a previous attempt by Eshelby. Those for both types of edges involve in addition an unusual convolution with the second spatial derivative of the displacement jump. As a check, it is shown that these equations correctly reduce, in the stationary limit and for all three types of dislocations, to Weertman's equations that extend the static Peierls-Nabarro model to finite constant velocities.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Comment on "Dynamic Peierls-Nabarro equations for elastically isotropic crystals"
    Markenscoff, Xanthippi
    PHYSICAL REVIEW B, 2011, 83 (05)
  • [2] Reply to "Comment on 'Dynamic Peierls-Nabarro equations for elastically isotropic crystals' "
    Pellegrini, Yves-Patrick
    PHYSICAL REVIEW B, 2011, 83 (05):
  • [3] The Peierls-Nabarro and Benjamin-Ono equations
    Toland, JF
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) : 136 - 150
  • [4] Peierls stresses estimated by a discretized Peierls-Nabarro model for a variety of crystals
    Edagawa, K.
    Kamimura, Y.
    Iskandarov, A. M.
    Umeno, Y.
    Takeuchi, S.
    MATERIALIA, 2019, 5
  • [5] THE GENERALIZED PEIERLS-NABARRO MODEL
    SCHOECK, G
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1994, 69 (06): : 1085 - 1095
  • [6] A quantum Peierls-Nabarro barrier
    Speight, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (26): : 4741 - 4754
  • [7] The Peierls-Nabarro model revisited
    Lu, G
    Kioussis, N
    Bulatov, VV
    Kaxiras, E
    PHILOSOPHICAL MAGAZINE LETTERS, 2000, 80 (10) : 675 - 682
  • [8] Discrete nonlinear Schrodinger equations free of the Peierls-Nabarro potential
    Dmitriev, S. V.
    Kevrekidis, P. G.
    Sukhorukov, A. A.
    Yoshikawa, N.
    Takeno, S.
    PHYSICS LETTERS A, 2006, 356 (4-5) : 324 - 332
  • [9] PEIERLS-NABARRO MODEL OF PLANAR DISLOCATION CORES IN BCC CRYSTALS
    LEJCEK, L
    CZECHOSLOVAK JOURNAL OF PHYSICS SECTION B, 1972, B 22 (09): : 802 - &
  • [10] UNIFORMLY MOVING PEIERLS-NABARRO DISLOCATION
    SHMATOV, VT
    FIZIKA METALLOV I METALLOVEDENIE, 1981, 52 (01): : 17 - 27