Fractional-order Bessel functions with various applications

被引:15
|
作者
Dehestani, Haniye [1 ]
Ordokhani, Yadollah [1 ]
Razzaghi, Mohsen [2 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
[2] Mississippi State Univ, Dept Math & Stat, Starkville, MS 39762 USA
关键词
fractional-order Bessel functions; fractional operational matrix; error estimation; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; INTEGRODIFFERENTIAL EQUATIONS; COLLOCATION METHOD; SYSTEMS; INTEGRATION; WAVELETS;
D O I
10.21136/AM.2019.0279-18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between the computed approximations and the exact solution and apply it in some examples. Applications are given to three model problems to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:637 / 662
页数:26
相关论文
共 50 条
  • [1] Fractional-order Bessel functions with various applications
    Haniye Dehestani
    Yadollah Ordokhani
    Mohsen Razzaghi
    [J]. Applications of Mathematics, 2019, 64 : 637 - 662
  • [2] Fractional-order general Lagrange scaling functions and their applications
    Sabermahani, Sedigheh
    Ordokhani, Yadollah
    Yousefi, Sohrab Ali
    [J]. BIT NUMERICAL MATHEMATICS, 2020, 60 (01) : 101 - 128
  • [3] Fractional-order general Lagrange scaling functions and their applications
    Sedigheh Sabermahani
    Yadollah Ordokhani
    Sohrab Ali Yousefi
    [J]. BIT Numerical Mathematics, 2020, 60 : 101 - 128
  • [4] Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (06) : 1032 - 1052
  • [5] Fractional-order Legendre functions for solving fractional-order differential equations
    Kazem, S.
    Abbasbandy, S.
    Kumar, Sunil
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 5498 - 5510
  • [6] Lyapunov functions for fractional-order systems in biology: Methods and applications
    Boukhouima, Adnane
    Hattaf, Khalid
    Lotfi, El Mehdi
    Mahrouf, Marouane
    Torres, Delfim F. M.
    Yousfi, Noura
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [7] Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases
    Izadi, Mohammad
    Srivastava, H. M.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 145
  • [8] Robust stability criterion of fractional-order functions for interval fractional-order systems
    Gao, Zhe
    Liao, Xiaozhong
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01): : 60 - 67
  • [9] Implementation of fractional-order transfer functions in the viewpoint of the required fractional-order capacitors
    Tavakoli-Kakhki, Mahsan
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (01) : 63 - 73
  • [10] CIM applications in fractional domain: Fractional-order universal filter & fractional-order oscillator
    Varshney, Garima
    Pandey, Neeta
    Minaei, Shahram
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2022, 156