Demographic Classification Using Skin RGB Albedo Image Analysis

被引:0
|
作者
Chen, Wei [1 ]
Viana, Miguel [1 ]
Ardabilian, Mohsen [1 ]
Zine, Abdel-Malek [2 ]
机构
[1] Ecole Cent Lyon, Lab Informat Image & Syst Informat LIRIS, 36 Ave Guy de Collongue, F-69134 Ecully, France
[2] Ecole Cent Lyon, Inst Camille Jordan, 36 Ave Guy de Collongue, F-69134 Ecully, France
关键词
RGB albedo; Image analysis; Skin reflectance; Gender recognition; Age recognition; Skin type recognition; Fusion; Machine learning; REFLECTANCE; DIFFUSION; THICKNESS; MODEL;
D O I
10.1007/978-3-319-68548-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Age, gender and skin type classification of demographics using common imaging techniques is costly and does not provide good performance. We propose an approach based on skin RGB albedo image analysis for demographic classification. The diffuse albedo uses inherent skin properties which prevail over illumination conditions variation despite being based on visual perception. The method was tested using skin samples from multiple facial regions to evaluate their performance for classification. Moreover, the application of a fusion algorithm using albedo data from each of the facial regions improved the overall performance resulting in rates above 90% accuracy in age, gender and skin type categories.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 50 条
  • [1] Skin tear classification using machine learning from digital RGB image
    Nagata, Takuro
    Noyori, Shuhei S.
    Noguchi, Hiroshi
    Nakagami, Gojiro
    Kitamura, Aya
    Sanada, Hiromi
    JOURNAL OF TISSUE VIABILITY, 2021, 30 (04) : 588 - 593
  • [2] Image Classification using Visible RGB bands
    Upadhyay, Pragati
    Mahadik, Sheetal
    Kamble, Arathi
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 2660 - 2663
  • [3] Albedo recovery for hyperspectral image classification
    Zhan, Kun
    Wang, Haibo
    Xie, Yuange
    Zhang, Chutong
    Min, Yufang
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (04)
  • [4] Classification of Papulo-Squamous skin diseases using image analysis
    Mashaly, H. M.
    Masood, N. A.
    Mohamed, Abdalla S. A.
    SKIN RESEARCH AND TECHNOLOGY, 2012, 18 (01) : 36 - 44
  • [5] Skin Tone Assessment Using Hyperspectral Reconstruction from RGB Image
    Jagadeesha, Nishchal
    Trisal, Ankur
    Tiwar, Vijay Narayan
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [6] Single-image RGB Photometric Stereo With Spatially-varying Albedo
    Chakrabarti, Ayan
    Sunkavalli, Kalyan
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 258 - 266
  • [7] RGB image classification with quantum convolutional ansatz
    Jing, Yu
    Li, Xiaogang
    Yang, Yang
    Wu, Chonghang
    Fu, Wenbing
    Hu, Wei
    Li, Yuanyuan
    Xu, Hua
    QUANTUM INFORMATION PROCESSING, 2022, 21 (03)
  • [8] RGB image classification with quantum convolutional ansatz
    Yu Jing
    Xiaogang Li
    Yang Yang
    Chonghang Wu
    Wenbing Fu
    Wei Hu
    Yuanyuan Li
    Hua Xu
    Quantum Information Processing, 2022, 21
  • [9] Image Classification Using PSO-SVM and an RGB-D Sensor
    Lopez-Franco, Carlos
    Villavicencio, Luis
    Arana-Daniel, Nancy
    Alanis, Alma Y.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [10] Deep Learning Model for Accurate Vegetation Classification Using RGB Image Only
    Ayhan, Bulent
    Kwan, Chiman
    Larkin, Jude
    Kwan, Liyun
    Skarlatos, Dimitrios
    Vlachos, Marinos
    GEOSPATIAL INFORMATICS X, 2020, 11398