A novel multi-swarm particle swarm optimization for feature selection

被引:32
|
作者
Qiu, Chenye [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Internet Things, 66 Xinmofan Rd, Nanjing 210003, Jiangsu, Peoples R China
关键词
Feature selection; Particle swarm optimization; Multi-swarm topology; Elite learning strategy; Local search operator; ANT COLONY OPTIMIZATION; MUTUAL INFORMATION; GENETIC ALGORITHM; BINARY PSO; CLASSIFICATION; RELEVANCE; SEARCH;
D O I
10.1007/s10710-019-09358-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel feature selection method based on a multi-swarm particle swarm optimization (MSPSO) is proposed in this paper. The canonical particle swarm optimization (PSO) has been widely used for feature selection problems. However, PSO suffers from stagnation in local optimal solutions and premature convergence in complex feature selection problems. This paper employs the multi-swarm topology in which the population is split into several small-sized sub-swarms. Particles in each sub-swarm update their positions with the guidance of the local best particle in its own sub-swarm. In order to promote information exchange among the sub-swarms, an elite learning strategy is introduced in which the elite particles in each sub-swarm learn from the useful information found by other sub-swarms. Moreover, a local search operator is proposed to improve the exploitation ability of each sub-swarm. MSPSO is able to improve the population diversity and better explore the entire feature space. The performance of the proposed method is compared with six PSO based wrappers, three traditional wrappers, and three popular filters on eleven datasets. Experimental results verify that MSPSO can find feature subsets with high classification accuracies and smaller numbers of features. The analysis of the search behavior of MSPSO demonstrates its effectiveness on maintaining population diversity and finding better feature subsets. The statistical test demonstrates that the superiority of MSPSO over other methods is significant.
引用
收藏
页码:503 / 529
页数:27
相关论文
共 50 条
  • [1] A novel multi-swarm particle swarm optimization for feature selection
    Chenye Qiu
    [J]. Genetic Programming and Evolvable Machines, 2019, 20 : 503 - 529
  • [2] Dynamic multi-swarm optimization based on clonal selection and particle swarm
    Wang, Qiao-Ling
    Gao, Xiao-Zhi
    Wang, Chang-Hong
    Liu, Fu-Rong
    [J]. Kongzhi yu Juece/Control and Decision, 2008, 23 (09): : 1073 - 1076
  • [3] A novel multi-swarm particle swarm optimization with dynamic learning strategy
    Ye, Wenxing
    Feng, Weiying
    Fan, Suohai
    [J]. APPLIED SOFT COMPUTING, 2017, 61 : 832 - 843
  • [4] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    [J]. ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [5] Fully Learned Multi-swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Ye, Bin
    Tan, Lijing
    Liang, Jane Jing
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 150 - 157
  • [6] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [7] Multi-swarm Particle Swarm Optimization for Payment Scheduling
    Li, Xiao-Miao
    Lin, Ying
    Chen, Wei-Neng
    Zhang, Jun
    [J]. 2017 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2017), 2017, : 284 - 291
  • [8] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    [J]. COMPUTING, 2020, 102 (07) : 1587 - 1626
  • [9] Dynamic multi-swarm global particle swarm optimization
    Xuewen Xia
    Yichao Tang
    Bo Wei
    Yinglong Zhang
    Ling Gui
    Xiong Li
    [J]. Computing, 2020, 102 : 1587 - 1626
  • [10] A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization
    Yazdani, Danial
    Nasiri, Babak
    Sepas-Moghaddam, Alireza
    Meybodi, Mohammad Reza
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (04) : 2144 - 2158