THE ROGERS-RAMANUJAN CONTINUED FRACTION AND RELATED ETA-QUOTIENT REPRESENTATIONS

被引:12
|
作者
Chern, Shane [1 ]
Tang, Dazhao [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Rogers– Ramanujan continued fraction; eta-quotient representations; recurrence relations;
D O I
10.1017/S0004972720000933
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct eta-quotient representations of two families of q-series involving the Rogers-Ramanujan continued fraction by establishing related recurrence relations. We also display how these eta-quotient representations can be utilised to dissect certain q-series identities.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 50 条
  • [1] The Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Huang, SS
    Kang, SY
    Sohn, J
    Son, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 9 - 24
  • [2] On the generalized Rogers-Ramanujan continued fraction
    Berndt, BC
    Yee, AJ
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 321 - 331
  • [3] On the Rogers-Ramanujan periodic continued fraction
    Buslaev, VI
    Buslaeva, SF
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 783 - 793
  • [4] ON THE ROGERS-RAMANUJAN CONTINUED-FRACTION
    RAMANATHAN, KG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1984, 93 (2-3): : 67 - 77
  • [5] IDENTITIES FOR THE ROGERS-RAMANUJAN CONTINUED FRACTION
    Baruah, Nayandeep deka
    Talukdar, Pranjal
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 97 - 126
  • [6] Convergence of the Rogers-Ramanujan continued fraction
    Buslaev, VI
    SBORNIK MATHEMATICS, 2003, 194 (5-6) : 833 - 856
  • [7] Singular values of the Rogers-Ramanujan continued fraction
    Alice Gee
    Mascha Honsbeek
    The Ramanujan Journal, 2006, 11
  • [8] Explicit evaluations of the Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Zhang, LC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 480 : 141 - 159
  • [9] Singular values of the Rogers-Ramanujan continued fraction
    Gee, Alice
    Honsbeek, Mascha
    RAMANUJAN JOURNAL, 2006, 11 (03): : 267 - 284
  • [10] Modular equations for the Rogers-Ramanujan continued fraction and the Dedekind eta-function
    Yi, JH
    RAMANUJAN JOURNAL, 2001, 5 (04): : 377 - 384