Solving viscoelastic free surface flows of a second-order fluid using a marker-and-cell approach

被引:15
|
作者
Tome, M. F.
Doricio, J. L.
Castelo, A.
Cuminato, J. A.
McKee, S. [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XW, Lanark, Scotland
[2] USP, ICMC, BR-13560970 Sao Carlos, SP, Brazil
关键词
free surface flow; marker-and-cell; second-order fluid; finite difference;
D O I
10.1002/fld.1298
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work is concerned with the numerical simulation of two-dimensional viscoelastic free surface flows of a second-order fluid. The governing equations are solved by a finite difference technique based on the marker-and-cell philosophy. A staggered grid is employed and marker particles are used to represent the fluid free surface. Full details for the approximation of the free surface stress conditions are given. The resultant code is validated and convergence is demonstrated. Numerical simulations of the extrudate swell and flow through a planar 4:1 contraction for various values of the Deborah number are presented. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:599 / 627
页数:29
相关论文
共 50 条
  • [1] A marker-and-cell approach to viscoelastic free surface flows using the PTT model
    de Paulo, G. S.
    Tome, M. F.
    Mckee, S.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 147 (03) : 149 - 174
  • [2] A marker-and-cell approach to free surface 2-D multiphase flows
    Santos, F. L. P.
    Ferreira, V. G.
    Tome, M. F.
    Castelo, A.
    Mangiavacchi, N.
    McKee, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (12) : 1543 - 1557
  • [3] A Marker-and-Cell Scheme for Viscoelastic Flows on Non Uniform Grids
    Mokhtari, O.
    Davit, Y.
    Latche, J. -C.
    de Loubens, R.
    Quintard, M.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 645 - 653
  • [4] Swirling flow of a viscoelastic fluid with free surface - Part II: Numerical analysis with extended marker-and-cell method
    Yu, B
    Wei, JJ
    Kawaguchi, Y
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 77 - 87
  • [5] STAGNATION POINT FLOW OF A SECOND-ORDER VISCOELASTIC FLUID
    SARPKAYA, T
    RAINEY, PG
    ACTA MECHANICA, 1971, 11 (3-4) : 237 - &
  • [6] A fluid in contact with a semipermeable surface: Second-order integral equation approach
    Bryk, P
    Henderson, D
    Sokolowski, S
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08): : 3333 - 3336
  • [7] A Reduced Second-Order Approach for Linear Viscoelastic Oscillators
    Adhikari, Sondipon
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2010, 77 (04): : 1 - 8
  • [8] NUMERICAL SIMULATION OF FLOWS FOR SECOND-ORDER VISCOELASTIC FLUID COUPLED WITH HEAT TRANSFER BY DIFFERENTIAL QUADRATURE METHOD
    AL-SAIF A.S.J.
    Journal of Hydrodynamics(SerB)., 2005, (02) : 209 - 215
  • [9] NUMERICAL SIMULATION OF FLOWS FOR SECOND-ORDER VISCOELASTIC FLUID COUPLED WITH HEAT TRANSFER BY DIFFERENTIAL QUADRATURE METHOD
    Al-Saif, A. S. J.
    Zhu Zheng-you
    JOURNAL OF HYDRODYNAMICS, 2005, 17 (02) : 209 - 215
  • [10] Orientation kinematics of short fibres in a second-order viscoelastic fluid
    Borzacchiello, Domenico
    Abisset-Chavanne, Emmanuelle
    Chinesta, Francisco
    Keunings, Roland
    RHEOLOGICA ACTA, 2016, 55 (05) : 397 - 409