The boundary integral method for magnetic billiards

被引:18
|
作者
Hornberger, K [1 ]
Smilansky, U
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
关键词
D O I
10.1088/0305-4470/33/14/315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a boundary integral method for two-dimensional quantum billiards subjected to a constant magnetic field, it allows us to calculate spectra and wavefunctions, in particular at strong fields and semiclassical values of the magnetic length. The method is presented for interior and exterior problems with general boundary conditions. We explain why the magnetic analogues of the field-free single- and double-layer equations exhibit an infinity of spurious solutions and how these can be eliminated at the expense of dealing with (hyper-)singular operators. The high efficiency of the method is demonstrated by numerical calculations in the extreme semiclassical regime.
引用
收藏
页码:2829 / 2855
页数:27
相关论文
共 50 条
  • [1] Boundary integral method for quantum billiards in a constant magnetic field
    Tiago, ML
    deCarvalho, TO
    deAguiar, MAM
    PHYSICAL REVIEW E, 1997, 55 (01): : 65 - 70
  • [2] Quantizing neutrino billiards: an expanded boundary integral method
    Yu, Pei
    Dietz, B.
    Huang, L.
    NEW JOURNAL OF PHYSICS, 2019, 21 (07):
  • [3] Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards
    Veble, G.
    Prosen, T.
    Robnik, M.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [4] A boundary integral formalism for stochastic ray tracing in billiards
    Chappell, David J.
    Tanner, Gregor
    CHAOS, 2014, 24 (04)
  • [5] On the boundary element method for billiards with corners
    Okada, Y
    Shudo, A
    Tasaki, S
    Harayama, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6675 - 6688
  • [6] Quantum magnetic billiards: boundary conditions and gauge transformations
    Angelone, Giuliano
    Facchi, Paolo
    Lonigro, Davide
    ANNALS OF PHYSICS, 2022, 442
  • [7] ON THE DISCONTINUITIES OF THE BOUNDARY IN BILLIARDS
    DAGAEFF, T
    ROUVINEZ, C
    PHYSICA D, 1993, 67 (1-3): : 166 - 187
  • [8] BOUNDARY INTEGRAL METHOD IN MAGNETOELASTICITY
    SLADEK, V
    SLADEK, J
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1988, 26 (05) : 401 - 418
  • [9] A constrained conjugate gradient method for solving the magnetic field boundary integral equation
    van den Berg, PM
    Korkmaz, E
    Abubakar, A
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (06) : 1168 - 1176
  • [10] Boundary-integral method for calculating poloidal axisymmetric AC magnetic fields
    Priede, J
    Gerbeth, G
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (02) : 301 - 308