Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil

被引:67
|
作者
Dyer, Andrew C. [1 ]
Nahil, Mohamad A. [1 ]
Williams, Paul T. [1 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Pyrolysis; Biomass; Plastics; Zeolite; Bio-oil; HIGH-DENSITY POLYETHYLENE; RECENT PROGRESS; CELLULOSE; HZSM-5; CONVERSION; FUEL;
D O I
10.1016/j.joei.2021.03.022
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A two-stage reactor system consisting of co-pyrolysis of biomass and plastic in the 1st stage and catalytic upgrading (zeolite ZSM-5 catalyst) of the derived pyrolysis gases in the 2nd stage was used to investigate the yield and composition of the product gases and bio-oil. Biomass waste wood and waste plastics in the form of high density polyethylene, low density polyethylene, polypropylene, polystyrene and polyethylene terephthalate were used as feedstock. The addition of the plastics to the biomass with co-pyrolysis-catalysis, produced a higher CnHm gas yield compared with what would be expected by calculation, suggesting some interaction of the biomass and plastic. The presence of waste plastic resulted in a decrease in the relative proportion of oxygenated compounds in the product oil compared to pyrolysis of biomass alone; for example a reduction of >65% for biomass with polyethylene and polypropylene and >95% reduction for biomass with polystyrene. The fuel properties of the co-pyrolysis upgraded oil were improved compared to biomass alone; for example, the co-pyrolysis of polystyrene and biomass showed an improved relative proportion of compounds in the C-5 - C-12 fuel range (76%). In terms of the ratio of biomass to plastic, even low quantities of plastic (9:1 biomass:plastic ratio) produced a lower relative proportion of oxygenated bio-oil compounds, for example biomass:polystyrene at a ratio of 9:1 reduced the relative proportion of oxygenated compounds in the product bio-oil by >55%. (C) 2021 Energy Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [1] Bio-oil upgraded by catalytic co-pyrolysis of sawdust with tyre
    Cao, Qing
    Zhou, Cunming
    Zhong, Cungui
    Jin, Li'e
    [J]. INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2014, 8 (02) : 235 - 250
  • [2] Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil
    Tshikesho, Redemptus S.
    Kumar, Ajay
    Huhnke, Raymond L.
    Apblett, Allen
    [J]. BIORESOURCE TECHNOLOGY, 2019, 285
  • [3] Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual
    Wang, Jia
    Zhong, Zhaoping
    Zhang, Bo
    Ding, Kuan
    Xue, Zeyu
    Deng, Aidong
    Ruan, Roger
    [J]. WASTE MANAGEMENT, 2017, 60 : 357 - 362
  • [4] Enhanced yield and production of aromatics rich fractions in bio-oil through co-pyrolysis of waste biomass and plastics
    Chaturvedi, Ekta
    Roy, Poulomi
    Upadhyay, Rakesh
    Chowdhury, Palash
    [J]. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 178
  • [5] Machine learning to predict biochar and bio-oil yields from co-pyrolysis of biomass and plastics
    Alabdrabalnabi, Aessa
    Gautam, Ribhu
    Sarathy, S. Mani
    [J]. FUEL, 2022, 328
  • [6] Characterization and bio-oil analysis of microalgae and waste tires by microwave catalytic co-pyrolysis
    Chen, Chunxiang
    Zhao, Shiyi
    Qiu, Hongfu
    Yang, Ronglin
    Wan, Shouqiang
    He, Shiyuan
    Shi, Haosen
    Zhu, Qi
    [J]. ENERGY, 2024, 302
  • [7] Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres
    Alvarez, Jon
    Amutio, Maider
    Lopez, Gartzen
    Santamaria, Laura
    Bilbao, Javier
    Olazar, Martin
    [J]. WASTE MANAGEMENT, 2019, 85 : 385 - 395
  • [8] Co-pyrolysis of plastics and food waste mixture under flue gas condition for bio-oil production
    Lim, Huei Yeong
    Tang, Shu Hui
    Chai, Yee Ho
    Yusup, Suzana
    Lim, Mook Tzeng
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 56
  • [9] Co-pyrolysis of plastics and food waste mixture under flue gas condition for bio-oil production
    Lim, Huei Yeong
    Tang, Shu Hui
    Chai, Yee Ho
    Yusup, Suzana
    Lim, Mook Tzeng
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 54
  • [10] Synergistic effect during catalytic co-pyrolysis of bio-oil distillation residue and waste plastic
    Wang, Runtao
    Luo, Zejun
    Wang, Chu
    Zhu, Xifeng
    [J]. Huagong Xuebao/CIESC Journal, 2022, 73 (11): : 5088 - 5097