Metal-Organic Frameworks for Separation

被引:768
|
作者
Zhao, Xiang [1 ]
Wang, Yanxiang [1 ]
Li, Dong-Sheng [2 ]
Bu, Xianhui [3 ]
Feng, Pingyun [1 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[2] Calif State Univ Long Beach, Dept Chem & Biochem, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
[3] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmetall Crystalline & Energy Co, Hubei Prov Collaborat Innovat Ctr New Energy Micr, Yichang 443002, Peoples R China
关键词
crystalline porous materials; hybrid materials; metal-organic frameworks; selectivity; separation; CARBON-DIOXIDE CAPTURE; PORE-SPACE PARTITION; HYDROGEN ISOTOPE-SEPARATION; HIGHLY SELECTIVE SEPARATION; GAS-SEPARATION; COORDINATION-FRAMEWORK; POROUS MATERIALS; MOLECULAR-SIEVE; XYLENE ISOMERS; HEXANE ISOMERS;
D O I
10.1002/adma.201705189
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Separation is an important industrial step with critical roles in the chemical, petrochemical, pharmaceutical, and nuclear industries, as well as in many other fields. Although much progress has been made, the development of better separation technologies, especially through the discovery of high-performance separation materials, continues to attract increasing interest due to concerns over factors such as efficiency, health and environmental impacts, and the cost of existing methods. Metal-organic frameworks (MOFs), a rapidly expanding family of crystalline porous materials, have shown great promise to address various separation challenges due to their well-defined pore size and unprecedented tunability in both composition and pore geometry. In the past decade, extensive research is performed on applications of MOF materials, including separation and capture of many gases and vapors, and liquid-phase separation involving both liquid mixtures and solutions. MOFs also bring new opportunities in enantioselective separation and are amenable to morphological control such as fabrication of membranes for enhanced separation outcomes. Here, some of the latest progress in the applications of MOFs for several key separation issues, with emphasis on newly synthesized MOF materials and the impact of their compositional and structural features on separation properties, are reviewed and highlighted.
引用
下载
收藏
页数:34
相关论文
共 50 条
  • [1] Anion separation with metal-organic frameworks
    Custelcean, Radu
    Moyer, Bruce A.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2007, (10) : 1321 - 1340
  • [2] Metal-Organic Frameworks for Macromolecular Recognition and Separation
    Hosono, Nobuhiko
    Uemura, Takashi
    MATTER, 2020, 3 (03) : 652 - 663
  • [3] Modeling gas separation in metal-organic frameworks
    Brad A. Wells
    Alan L. Chaffee
    Adsorption, 2011, 17 : 255 - 264
  • [4] Fluorinated metal-organic frameworks for gas separation
    Ebadi Amooghin, Abtin
    Sanaeepur, Hamidreza
    Luque, Rafael
    Garcia, Hermenegildo
    Chen, Banglin
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (17) : 7427 - 7508
  • [5] Anion coordination and separation with metal-organic frameworks
    Custelcean, Radu
    Gorbunova, Maryna G.
    Moyer, Bruce A.
    Hay, Benjamin P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [6] Separation of light hydrocarbons with metal-organic frameworks
    Cui X.
    Xing H.
    Xing, Huabin (xinghb@zju.edu.cn), 2018, Materials China (69): : 2339 - 2352
  • [7] Application of metal-organic frameworks and their composites in separation
    Zhang Xiaoqiong
    Wang Tong
    Wang Peiyi
    Yao Wei
    Ding Mingyu
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2016, 34 (12) : 1176 - 1185
  • [8] Modeling gas separation in metal-organic frameworks
    Wells, Brad A.
    Chaffee, Alan L.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (01): : 255 - 264
  • [9] Application of Metal-Organic Frameworks in Chromatographic Separation
    Li Xiaoxin
    Shu Lun
    Chen Sha
    ACTA CHIMICA SINICA, 2016, 74 (12) : 969 - 979
  • [10] Metal-organic frameworks for multicomponent gas separation
    Zhang, Xin
    Li, Yi
    Li, Jian-Rong
    TRENDS IN CHEMISTRY, 2024, 6 (01): : 22 - 36