Coordinate-free formulation of the Cartesian stiffness matrix

被引:0
|
作者
Zefran, M
Kumar, V
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper we study the Cartesian stiffness matrix using methods of differential geometry. We show that the stiffness of a conservative mechanical system is described by a ((0)(2)) tensor and that components of the Cartesian stiffness matrix are given by evaluating this tensor on a pair of basis twists. Our formulation leads to three important results: (a) The stiffness matrix does not depend on the parameterization of the manifold; (b) The stiffness matrix depends on the choice of a connection on the manifold; and (c) The standard definition of the Cartesian stiffness matrix assumes an asymmetric connection and this is the reason that the matrix is, in general, asymmetric.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] THE SIMPLEX-METHOD IN COORDINATE-FREE FORMULATION
    FAIBUSOVICH, LE
    CYBERNETICS, 1983, 19 (02): : 247 - 252
  • [2] On the use of coordinate-free matrix calculus
    Brinkhuis, Jan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 : 377 - 381
  • [3] Coordinate-Free Formulation of Nonholonomic Constraints forWheeled Robots
    Cesar, Sanjuan Szklarz Pawel
    Jarzebowska, Elzbieta
    APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 : 443 - 455
  • [4] COORDINATE-FREE LOGIC
    Leo, Joop
    REVIEW OF SYMBOLIC LOGIC, 2016, 9 (03): : 522 - 555
  • [5] LAGRANGIAN QUANTUM-THEORY .3. COORDINATE-FREE FORMULATION
    BLOORE, FJ
    ROUTH, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (15): : 1829 - 1839
  • [6] COORDINATE-FREE ROTATION FORMALISM
    MATHEWS, J
    AMERICAN JOURNAL OF PHYSICS, 1976, 44 (12) : 1210 - 1210
  • [7] COORDINATE-FREE ROTATION OPERATOR
    LEUBNER, C
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (08) : 727 - 729
  • [8] COORDINATE-FREE ISOPARAMETRIC ELEMENTS
    MILLER, GR
    COMPUTERS & STRUCTURES, 1993, 49 (06) : 1027 - 1035
  • [9] COORDINATE-FREE CLASSIC GEOMETRIES
    Anan'in, Sasha
    Grossi, Carlos H.
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (04) : 633 - 655
  • [10] COORDINATE-FREE DIFFERENTIAL GEOMETRY
    SERIBA, CH
    MONATSHEFTE FUR MATHEMATIK, 1968, 72 (03): : 224 - &