Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides

被引:38
|
作者
Leng, Feng-Chun [1 ]
Liang, Wen-Yao [1 ]
Liu, Bin [1 ]
Wang, Tong-Biao [1 ]
Wang, He-Zhou [1 ]
机构
[1] Zhongshan Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
来源
OPTICS EXPRESS | 2010年 / 18卷 / 06期
基金
中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY-INDUCED TRANSPARENCY; PROPAGATION; BANDWIDTH; PULSE; CHIP;
D O I
10.1364/OE.18.005707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We find that the angle between elementary lattice vectors obviously affects the bandwidth and dispersion of slow light in photonic crystal line-defect waveguides. When the fluctuation of group index is strictly limited in a +/- 1% range, the oblique lattice structures with the angle between elementary lattice vectors slightly larger than 60 degrees have broader available bandwidth of flat band slow light than triangular lattice structures. For example, for the angle 66 degrees, there are increases of the available bandwidth from 20% to 68% for several different structures. For the same angle and a +/- 10% variation in group velocity, when group indices are nearly constants of 30, 48.5, 80 and 130, their corresponding bandwidths of flat band reach 20 nm, 11.8 nm, 7.3 nm and 3.9 nm around 1550 nm, respectively. The increasing of bandwidth is related to the shift of the anticrossing point towards smaller wave numbers. (C) 2010 Optical Society of America
引用
收藏
页码:5707 / 5712
页数:6
相关论文
共 50 条
  • [21] Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration
    Ebnali-Heidari, M.
    Grillet, C.
    Monat, C.
    Eggleton, B. J.
    OPTICS EXPRESS, 2009, 17 (03): : 1628 - 1635
  • [22] Photonic crystal waveguides with semi-slow light and tailored dispersion properties
    Frandsen, Lars H.
    Lavrinenko, Andrei V.
    Fage-Pedersen, Jacob
    Borel, Peter I.
    OPTICS EXPRESS, 2006, 14 (20) : 9444 - 9450
  • [23] Slow light engineering in polyatomic photonic crystal waveguides based on square lattice
    Wang, Daobin
    Zhang, Jie
    Yuan, Lihua
    Lei, Jingli
    Chen, Sai
    Han, Jiawei
    Hou, Shanglin
    OPTICS COMMUNICATIONS, 2011, 284 (24) : 5829 - 5832
  • [24] Wideband and low dispersion slow light by altering the geometry of a photonic crystal waveguide
    Hocini, Abdesselam
    Maache, Mouhssin
    Khedrouche, Djamel
    OPTICS COMMUNICATIONS, 2018, 427 : 396 - 404
  • [25] Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide
    Mori, D
    Baba, T
    OPTICS EXPRESS, 2005, 13 (23): : 9398 - 9408
  • [26] Wideband slab photonic crystal waveguides for slow light using differential optofluidic infiltration
    Khodamohammadi, Amir
    Khoshsima, Habib
    Fallahi, Vahid
    Sahrai, Mostafa
    APPLIED OPTICS, 2015, 54 (05) : 1002 - 1009
  • [27] Systematic design of wideband slow light in ellipse-hole photonic crystal waveguides
    Tang, Jian
    Wang, Tao
    Li, Xiaoming
    Liu, Bo
    Wang, Boyun
    He, Yu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (05) : 1011 - 1017
  • [28] The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides
    Engelen, RJP
    Sugimoto, Y
    Watanabe, Y
    Korterik, JP
    Ikeda, N
    van Hulst, NF
    Asakawa, K
    Kuipers, L
    OPTICS EXPRESS, 2006, 14 (04): : 1658 - 1672
  • [29] Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides
    Mao Xiao-Yu
    Zhang Geng-Yan
    Huang Yi-Dong
    Zhang Wei
    Peng Jiang-De
    CHINESE PHYSICS LETTERS, 2008, 25 (12) : 4311 - 4313
  • [30] Polyatomic photonic crystal waveguides with semi-slow light and tailored dispersion properties
    Wang, Daobin
    Zhang, Jie
    Yuan, Lihua
    Lei, Jingli
    Chen, Sai
    Han, Jiawei
    Zhao, Yongli
    OPTOELECTRONIC MATERIALS AND DEVICES VI, 2011, 8308