Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels

被引:161
|
作者
Thiele, S. A. [1 ,2 ]
Schaefer, J. A. [2 ,3 ]
Schwierz, F. [1 ,2 ]
机构
[1] Tech Univ Ilmenau, Inst Mikro & Nanoelekt, D-98684 Ilmenau, Germany
[2] Tech Univ Ilmenau, Inst Mikro & Nanotechnologien, D-98684 Ilmenau, Germany
[3] Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany
关键词
PERFORMANCE;
D O I
10.1063/1.3357398
中图分类号
O59 [应用物理学];
学科分类号
摘要
A quasianalytical modeling approach for graphene metal-oxide-semiconductor field-effect transistors (MOSFETs) with gapless large-area graphene channels is presented. The model allows the calculation of the I-V characteristics, the small-signal behavior, and the cutoff frequency of graphene MOSFETs. It applies a correct formulation of the density of states in large-area graphene to calculate the carrier-density-dependent quantum capacitance, a steady-state velocity-field characteristics with soft saturation to describe the carrier transport, and takes the source/drain series resistances into account. The modeled drain currents and transconductances show very good agreement with experimental data taken from the literature {Meric et al., [Nat. Nanotechnol. 3, 654 (2008)] and Kedzierski et al., [IEEE Electron Device Lett. 30, 745 (2009)]}. In particular, the model properly reproduces the peculiar saturation behavior of graphene MOSFETs with gapless channels. (c) 2010 American Institute of Physics. [doi:10.1063/1.3357398]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling of the steady state characteristics of large-area graphene field-effect transistors
    Thiele, S.
    Schwierz, F.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)
  • [2] Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
    Basu, D.
    Gilbert, M. J.
    Register, L. F.
    Banerjee, S. K.
    MacDonald, A. H.
    APPLIED PHYSICS LETTERS, 2008, 92 (04)
  • [3] High resolution potassium sensing with large-area graphene field-effect transistors
    Fakih, Ibrahim
    Centeno, Alba
    Zurutuza, Amaia
    Ghaddab, Boutheina
    Siaj, Mohamed
    Szkopek, Thomas
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 291 : 89 - 95
  • [5] INTERFACE STATES IN METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
    SEQUIN, C
    BALDINGER, E
    SOLID-STATE ELECTRONICS, 1970, 13 (12) : 1527 - +
  • [6] On the threshold voltage of metal-oxide-semiconductor field-effect transistors
    Shi, XJ
    Wong, M
    SOLID-STATE ELECTRONICS, 2005, 49 (07) : 1179 - 1184
  • [7] Mitigation of Complementary Metal-Oxide-Semiconductor Variability with Metal Gate Metal-Oxide-Semiconductor Field-Effect Transistors
    Yang, Ji-Woon
    Park, Chang Seo
    Smith, Casey E.
    Adhikari, Hemant
    Huang, Jeff
    Heh, Dawei
    Majhi, Prashant
    Jammy, Raj
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (04)
  • [8] Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors
    Ferain, Isabelle
    Colinge, Cynthia A.
    Colinge, Jean-Pierre
    NATURE, 2011, 479 (7373) : 310 - 316
  • [9] CHARACTERISTICS OF TIN GATE METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
    WITTMER, M
    NOSER, JR
    MELCHIOR, H
    JOURNAL OF APPLIED PHYSICS, 1983, 54 (03) : 1423 - 1428
  • [10] Electron scattering in Ge metal-oxide-semiconductor field-effect transistors
    Lan, H. -S.
    Chen, Y. -T.
    Hsu, William
    Chang, H. -C.
    Lin, J. -Y.
    Chang, W. -C.
    Liu, C. W.
    APPLIED PHYSICS LETTERS, 2011, 99 (11)