In this paper, we explore the value of considering simultaneous pickups and deliveries inmulti-product inventory-routing problems both with deterministic and uncertain demand. Wepropose a multi-commodity, develop an exact branch-and-cut algorithm with patching heuristicsto efficiently tackle this problem, and provide insightful analyses based on optimal plans. Thesimplicity of the proposed approach is an important aspect, as it facilitates its usage in practice,opposed to complicated stochastic or probabilistic methods. The computational experimentssuggest that in the deterministic demand setting, pickups are mainly used to balance initialinventories, achieving an average total cost reduction of 1.1%, while transshipping 2.4% oftotal demand. Under uncertain demand, pickups are used extensively, achieving cost savings of up to 6.5% in specific settings. Overall, our sensitivity analysis shows that high inventory costsand high degrees of demand uncertainty drive the usage of pickups, which, counter-intuitively, are not desirable in every case