Network Intrusion Detection Method Based on FCWGAN and BiLSTM

被引:5
|
作者
Ma, Zexuan [1 ]
Li, Jin [1 ]
Song, Yafei [1 ]
Wu, Xuan [1 ]
Chen, Chen [1 ,2 ]
机构
[1] Air Force Engn Univ, Coll Air & Missile Def, Xian 710051, Peoples R China
[2] Xian Satellite Control Ctr, Xian 710043, Peoples R China
基金
中国国家自然科学基金;
关键词
FEATURE-SELECTION; DETECTION-SYSTEM; MODEL;
D O I
10.1155/2022/6591140
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Imbalanced datasets greatly affect the analysis capability of intrusion detection models, biasing their classification results toward normal behavior and leading to high false-positive and false-negative rates. To alleviate the impact of class imbalance on the detection accuracy of network intrusion detection models and improve their effectiveness, this paper proposes a method based on a feature selection-conditional Wasserstein generative adversarial network (FCWGAN) and bidirectional long short-term memory network (BiLSTM). The method uses the XGBoost algorithm with Spearman's correlation coefficient to select the data features, filters out useless and redundant features, and simplifies the data structure. A conditional WGAN (CWGAN) is used to generate a small number of samples in the dataset, add them to the original training set to supplement the dataset samples, and apply BiLSTM to complete the training of the model and realize the classification. In comparative tests based on the NSL-KDD and UNSW-NB15 datasets, the accuracy of the proposed model reached 99.57% and 85.59%, respectively, which is 1.44% and 2.98% higher than that of the same type of CWGAN and deep neural network (CWGAN-DNN) model, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM
    Li, Shuangyuan
    Li, Qichang
    Li, Mengfan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 507 - 515
  • [2] Network Intrusion Detection Method Based on CNN-BiLSTM-Attention Model
    Dai, Wei
    Li, Xinhui
    Ji, Wenxin
    He, Sicheng
    IEEE ACCESS, 2024, 12 : 53099 - 53111
  • [3] Network Intrusion Detection Method Combining CNN and BiLSTM in Cloud Computing Environment
    Gao, Jing
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] A New Industrial Intrusion Detection Method Based on CNN-BiLSTM
    Wang, Jun
    Si, Changfu
    Wang, Zhen
    Fu, Qiang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4297 - 4318
  • [5] A Network Intrusion Detection Model Based on BiLSTM with Multi-Head Attention Mechanism
    Zhang, Jingqi
    Zhang, Xin
    Liu, Zhaojun
    Fu, Fa
    Jiao, Yihan
    Xu, Fei
    ELECTRONICS, 2023, 12 (19)
  • [6] ADFCNN-BiLSTM: A Deep Neural Network Based on Attention and Deformable Convolution for Network Intrusion Detection
    Li, Bin
    Li, Jie
    Jia, Mingyu
    Sensors, 2025, 25 (05)
  • [7] A Network Intrusion Security Detection Method Using BiLSTM-CNN in Big Data Environment
    Wang, Hong
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (05): : 688 - 701
  • [8] An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model
    Shou, Dingyu
    Li, Chao
    Wang, Zhen
    Cheng, Song
    Hu, Xiaobo
    Zhang, Kai
    Wen, Mi
    Wang, Yong
    COMPUTER JOURNAL, 2023, 67 (05): : 1851 - 1865
  • [9] Fusion of transformer and ML-CNN-BiLSTM for network intrusion detection
    Xiang, Zelin
    Li, Xuwei
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [10] Research on Intrusion Detection Method Based On Neural Network
    Xu Chi
    Chen Jin
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 1479 - +