SIMPLY CONNECTED SASAKI-EINSTEIN RATIONAL HOMOLOGY 5-SPHERES

被引:3
|
作者
Park, Jihun [1 ,2 ]
Won, Joonyeong [3 ]
机构
[1] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang, South Korea
[2] Pohang Univ Sci & Technol, Dept Math, Pohang, South Korea
[3] Korea Inst Adv Study, Ctr Math Challenges, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
delta-invariant; Fano orbifold; Kahler-Einstein metric; K-stability; link; rational homology 5-sphere; Sasaki-Einstein metric; 14J45; 32Q20; 53C25; FANO VARIETIES; K-STABILITY; METRICS; MANIFOLDS; SINGULARITIES;
D O I
10.1215/00127094-2020-0085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely determine which simply connected rational homology 5-spheres admit Sasaki-Einstein metrics.
引用
收藏
页码:1085 / 1112
页数:28
相关论文
共 21 条
  • [1] Berglund-Hübsch Transpose and Sasaki-Einstein Rational Homology 7-Spheres
    Cuadros Valle, Jaime
    Gomez, Ralph R.
    Vicente, Joe Lope
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (08)
  • [3] Rational homology 5-spheres with positive Ricci curvature
    Boyer, CP
    Galicki, K
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (04) : 521 - 528
  • [4] Sasaki-Einstein 7-Manifolds, Orlik Polynomials and Homology
    Gomez, Ralph R.
    SYMMETRY-BASEL, 2019, 11 (07):
  • [5] Erratum and addendum for "rational homology 5-spheres with positive Ricci curvature"
    Boyer, CP
    Galicki, K
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) : 463 - 465
  • [6] Rational homology 3-spheres and simply connected definite bounding
    Sato, Kouki
    Taniguchi, Masaki
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (02): : 865 - 882
  • [7] New Sasaki-Einstein 5-manifolds
    Jeong, Dasol
    Kim, In-Kyun
    Park, Jihun
    Won, Joonyeong
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (03): : 821 - 842
  • [8] On irregular Sasaki-Einstein metrics in dimension 5
    Suss, H.
    SBORNIK MATHEMATICS, 2021, 212 (09) : 1261 - 1278
  • [9] Einstein metrics on rational homology spheres
    Boyer, Charles P.
    Galicki, Krzysztof
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2006, 74 (03) : 353 - 362
  • [10] Sasaki-Einstein 5-manifolds associated to toric 3-Sasaki manifolds
    van Coevering, Craig
    NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 : 555 - 608