Variational principle for general diffusion problems

被引:14
|
作者
Petrelli, L [1 ]
Tudorascu, A [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2004年 / 50卷 / 03期
关键词
anomalous diffusion; diffusion equations; optimal mass transportation; Wasserstein distance; discretized gradient flow; implicit schemes; nonhomogeneous; nonautonomous problem; weak solution;
D O I
10.1007/s00245-004-0801-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ the Monge-Kantorovich mass transfer theory to study the existence of solutions for a large class of parabolic partial differential equations. We deal with nonhomogeneous nonlinear diffusion problems (of Fokker-Planck type) with time-dependent coefficients. This work greatly extends the applicability of known techniques based on constructing weak solutions by approximation with time-interpolants of minimizers arising from Wasserstein-type implicit schemes. It also generalizes previous results of the authors, where proofs of convergence in the case of a right-hand side in the equation is given by these methods. To prove the existence of weak solutions we establish an interesting maximum principle for such equations. This involves comparison with the solution for the corresponding homogeneous, time-independent equation.
引用
收藏
页码:229 / 257
页数:29
相关论文
共 50 条
  • [1] Variational Principle for General Diffusion Problems
    Luca Petrelli
    Adrian Tudorascu
    [J]. Applied Mathematics and Optimization, 2004, 50 : 229 - 257
  • [2] AN EXTREMUM VARIATIONAL PRINCIPLE FOR SOME NONLINEAR DIFFUSION-PROBLEMS
    ATANACKOVIC, TM
    DJUKIC, DS
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1990, 33 (06) : 1081 - 1085
  • [3] Quasi-variational principle and general quasi-variational principle for incompressible flow boundary value problems
    Hao, Ming-Wang
    Liang, Li-Fu
    Ye, Zheng-Yin
    [J]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2010, 28 (03): : 297 - 301
  • [4] A Note on Variational Principle for Dissipative Reaction-Convection-Diffusion Problems
    Benes, Michal
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] A VARIATIONAL PRINCIPLE FOR A DIFFUSION PROBLEM
    ATANACKOVIC, TM
    DJUKIC, DS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (08): : 417 - 418
  • [6] A VARIATIONAL PRINCIPLE FOR SCATTERING PROBLEMS
    SCHWINGER, J
    [J]. PHYSICAL REVIEW, 1947, 72 (08): : 742 - 742
  • [7] THE VARIATIONAL PRINCIPLE OF GENERAL-RELATIVITY
    BISHOP, NT
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (01) : 31 - 36
  • [8] THE GENERAL VARIATIONAL PRINCIPLE OF TRANSPORT THEORY
    ZIMAN, JM
    [J]. CANADIAN JOURNAL OF PHYSICS, 1956, 34 (12) : 1256 - 1273
  • [9] Bimetric variational principle for general relativity
    Jimenez, Jose Beltran
    Golovnev, Alexey
    Karciauskas, Mindaugas
    Koivisto, Tomi S.
    [J]. PHYSICAL REVIEW D, 2012, 86 (08):
  • [10] Variational principle for some nonlinear problems
    Yi Tian
    [J]. GEM - International Journal on Geomathematics, 2022, 13