A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation

被引:20
|
作者
Matsuo, Takayasu [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
Galerkin method; Finite-element method; Conservation; Camassa-Holm equation; FINITE-DIFFERENCE SCHEMES;
D O I
10.1016/j.cam.2009.09.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation is presented. The scheme has an additional welcome feature that in exact arithmetic it is unconditionally stable in the sense that the solution is always bounded. Numerical examples that confirm the theory and the effectiveness of the scheme are also given. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1258 / 1266
页数:9
相关论文
共 50 条
  • [1] Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa-Holm equation
    Hong, Qi
    Gong, Yuezheng
    Lv, Zhongquan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 86 - 95
  • [2] A difference scheme for the camassa-holm equation
    Abdelgadir, Ahamed Adam
    Yao, Yang-Xin
    Fu, Yi-Ping
    Huang, Ping
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 1287 - 1295
  • [3] A local discontinuous Galerkin method for the Camassa-Holm equation
    Xu, Yan
    Shu, Chi-Wang
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1998 - 2021
  • [4] AN INVARIANT PRESERVING DISCONTINUOUS GALERKIN METHOD FOR THE CAMASSA-HOLM EQUATION
    Liu, Hailiang
    Xing, Yulong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A1919 - A1934
  • [5] Convergence of a finite difference scheme for the Camassa-Holm equation
    Holden, Helge
    Raynaud, Xavier
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1655 - 1680
  • [6] Generalizations of the Camassa-Holm equation
    Novikov, Vladimir
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [7] The Modified Camassa-Holm Equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2617 - 2649
  • [8] Peakons of the Camassa-Holm equation
    Liu, ZR
    Qian, TF
    [J]. APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) : 473 - 480
  • [9] A note on the Camassa-Holm equation
    Coclite, G. M.
    Karlsen, K. H.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2158 - 2166
  • [10] Breakdown of the Camassa-Holm equation
    McKean, HP
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (03) : 416 - 418